Skip to main content

Advertisement

Log in

Thermally resistant and strong remoldable triple-shape memory thermosets based on bismaleimide with transesterification

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is still a great challenge to endow remoldable triple-shape memory thermosets (Rtri-SMTs) with high glass transition temperature (Tg) and high mechanical properties. Herein, two Rtri-SMTs with high Tg and high tensile properties, coded as BA1 and BA2, were developed through building unique dynamic crosslinked networks based on bismaleimide and novel bisallyl compounds with dynamic ester bonds (AEG1 and AEG2). The Tg values of BA1 and BA2 resins are 143 °C and 203 °C, respectively, much higher than those of Rtri-SMTs reported so far (10–110 °C); meanwhile, BA resins exhibit high tensile strengths (BA1: 81 MPa; BA2: 84 MPa) and moduli (BA1: 2165 MPa; BA2: 3233 MPa), which are severally at least about 1.3–1.4 and 3.2–4.7 times of those Rtri-SMTs in the literature, respectively. Besides the superiorly high thermal and tensile properties, both BA resins are able to be remolded and reconfigured through the re-arrangement of crosslinked networks induced by dynamic exchange reaction of ester bonds. The mechanism behind these attractive properties of BA1 and BA2 resins is discussed.

Graphical abstract

Remoldable triple-shape memory thermosets with high glass transition temperature, high mechanical properties and good reconfigurability were developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Sellinger AT, Wang DH, Tan LS, Vaia RA (2010) Electrothermal polymer nanocomposite actuators. Adv Mater 22:3430–3435. https://doi.org/10.1002/adma.200904107

    Article  CAS  Google Scholar 

  2. Xiao X, Kong D, Qiu X, Zhang W, Zhang F, Liu L, Liu Y, Zhang S, Hu Y, Leng J (2015) Shape-memory polymers with adjustable high glass transition temperatures. Macromolecules 48:3582–3589. https://doi.org/10.1021/acs.macromol.5b00654

    Article  CAS  Google Scholar 

  3. Wie JJ, Chatterjee S, Wang DH, Tan L-S, Ravi Shankar M, White TJ (2014) Azobenzene-functionalized polyimides as wireless actuators. Polymer 55:5915–5923. https://doi.org/10.1016/j.polymer.2014.06.084

    Article  CAS  Google Scholar 

  4. Melly SK, Liu L, Liu Y, Leng J (2020) Active composites based on shape memory polymers: Overview, fabrication methods, applications, and future prospects. J Mater Sci 55:10975–11051. https://doi.org/10.1007/s10853-020-04761-w

    Article  CAS  Google Scholar 

  5. Chen B, Yuan L, Guan Q, Liang G, Gu A (2018) Preparation and mechanism of shape memory bismaleimide resins with high transition temperature, high toughness and good processability. J Mater Sci 53:10798–10811. https://doi.org/10.1007/s10853-018-2367-4

    Article  CAS  Google Scholar 

  6. Sokolowski WM, Tan SC (2007) Advanced self-deployable structures for space applications. J Spacecraft Rockets 44:750–754. https://doi.org/10.2514/1.22854

    Article  Google Scholar 

  7. Lan X, Liu Y, Lv H, Wang X, Leng J, Du S (2009) Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. Smart Mater Struct 18:024002. https://doi.org/10.1088/0964-1726/18/2/024002

    Article  CAS  Google Scholar 

  8. Liu Y, Du H, Liu L, Leng J (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23:023001. https://doi.org/10.1088/0964-1726/23/2/023001

    Article  CAS  Google Scholar 

  9. Keller P, Lake M, Codell D, Barrett R, Taylor R, Schultz M (2006) Development of elastic memory composite stiffeners for a flexible precision reflector. 47th AIAA/ASME/ASCE/AHS/ASC Struct, Struct. Dyn. Mater. Conf. Doi:https://doi.org/10.2514/6.2006-2179

  10. Ding Z, Yuan L, Huang T, Liang G, Gu A (2019) High-temperature triple-shape memory polymer with full recovery through cross-linking all-aromatic liquid crystalline poly(ester imide) under reduced molding temperature. Ind Eng Chem Res 58:8734–8742. https://doi.org/10.1021/acs.iecr.9b00662

    Article  CAS  Google Scholar 

  11. Pilate F, Toncheva A, Dubois P, Raquez JM (2016) Shape-memory polymers for multiple applications in the materials world. Eur Polym J 80:268–294. https://doi.org/10.1016/j.eurpolymj.2016.05.004

    Article  CAS  Google Scholar 

  12. Kong D, Li J, Guo A, Zhang X, Xiao X (2019) Self-healing high temperature shape memory polymer. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2019.109279

    Article  Google Scholar 

  13. Shi Y, Yoonessi M, Weiss RA (2013) High temperature shape memory polymers. Macromolecules 46:4160–4167. https://doi.org/10.1021/ma302670p

    Article  CAS  Google Scholar 

  14. Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33. https://doi.org/10.1016/j.progpolymsci.2015.04.002

    Article  CAS  Google Scholar 

  15. Yang Z, Chen Y, Wang Q, Wang T (2016) High performance multiple-shape memory behaviors of poly(benzoxazole-co-imide)s. Polymer 88:19–28. https://doi.org/10.1016/j.polymer.2016.02.001

    Article  CAS  Google Scholar 

  16. McBride MK, Podgorski M, Chatani S, Worrell BT, Bowman CN (2018) Thermoreversible folding as a route to the unique shape-memory character in ductile polymer networks. ACS Appl Mater Interfaces 10:22739–22745. https://doi.org/10.1021/acsami.8b06004

    Article  CAS  Google Scholar 

  17. Sabzi M, Babaahmadi M, Rahnama M (2017) Thermally and electrically triggered triple-shape memory behavior of poly(vinyl acetate)/poly(lactic acid) due to graphene-induced phase separation. ACS Appl Mater Interfaces 9:24061–24070. https://doi.org/10.1021/acsami.7b02259

    Article  CAS  Google Scholar 

  18. Zheng N, Fang G, Cao Z, Zhao Q, Xie T (2015) High strain epoxy shape memory polymer. Polym Chem 6:3046–3053. https://doi.org/10.1039/c5py00172b

    Article  CAS  Google Scholar 

  19. Capiel G, Marcovich NE, Mosiewicki MA (2019) Shape memory polymer networks based on methacrylated fatty acids. Eur Polym J 116:321–329. https://doi.org/10.1016/j.eurpolymj.2019.04.023

    Article  CAS  Google Scholar 

  20. Chen X, Li L, Wei T, Venerus DC, Torkelson JM (2019) Reprocessable polyhydroxyurethane network composites: effect of filler surface functionality on cross-link density recovery and stress relaxation. ACS Appl Mater Interfaces 11:2398–2407. https://doi.org/10.1021/acsami.8b19100

    Article  CAS  Google Scholar 

  21. Montarnal D, Capelot M, Tournilhac F, Leibler L (2011) Silica-like malleable materials from permanent organic networks. Science 334:965–968. https://doi.org/10.1126/science.1212648

    Article  CAS  Google Scholar 

  22. Feng X, Fan J, Li A, Li G (2019) Multireusable thermoset with anomalous flame-triggered shape memory effect. ACS Appl Mater Interfaces 11:16075–16086. https://doi.org/10.1021/acsami.9b03092

    Article  CAS  Google Scholar 

  23. de Luzuriaga AR, Martin R, Markaide N, Rekondo A, Cabañero G, Rodríguez J, Odriozola I (2016) Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater Horiz 3:241–247. https://doi.org/10.1039/c6mh00029k

    Article  Google Scholar 

  24. Taynton P, Yu K, Shoemaker RK, Jin Y, Qi HJ, Zhang W (2014) Heat- or water-driven malleability in a highly recyclable covalent network polymer. Adv Mater 26:3938–3942. https://doi.org/10.1002/adma.201400317

    Article  CAS  Google Scholar 

  25. Wang Y, Pan Y, Zheng Z, Ding X (2018) Reconfigurable and reprocessable thermoset shape memory polymer with synergetic triple dynamic covalent bonds. Macromol Rapid Commun 39:1800128. https://doi.org/10.1002/marc.201800128

    Article  CAS  Google Scholar 

  26. Zhu J, Fang G, Cao Z, Meng X, Ren H (2018) A self-folding dynamic covalent shape memory epoxy and its continuous glass fiber composite. Ind Eng Chem Res 57:5276–5281. https://doi.org/10.1021/acs.iecr.8b00222

    Article  CAS  Google Scholar 

  27. Ji S, Fan F, Sun C, Yu Y, Xu H (2017) Visible light-induced plasticity of shape memory polymers. ACS Appl Mater Interfaces 9:33169–33175. https://doi.org/10.1021/acsami.7b11188

    Article  CAS  Google Scholar 

  28. Van Herck N, Du Prez FE (2018) Fast healing of polyurethane thermosets using reversible triazolinedione chemistry and shape-memory. Macromolecules 51:3405–3414. https://doi.org/10.1021/acs.macromol.8b00368

    Article  CAS  Google Scholar 

  29. Fang Z, Zheng N, Zhao Q, Xie T (2017) Healable, reconfigurable, reprocessable thermoset shape memory polymer with highly tunable topological rearrangement kinetics. ACS Appl Mater Interfaces 9:22077–22082. https://doi.org/10.1021/acsami.7b05713

    Article  CAS  Google Scholar 

  30. Lawton MI, Tillman KR, Mohammed HS, Kuang W, Shipp DA, Mather PT (2016) Anhydride-based reconfigurable shape memory elastomers. ACS Macro Lett 5:203–207. https://doi.org/10.1021/acsmacrolett.5b00854

    Article  CAS  Google Scholar 

  31. Zhang H, Wang D, Wu N, Li C, Zhu C, Zhao N, Xu J (2020) Recyclable, self-healing, thermadapt triple-shape memory polymers based on dual dynamic bonds. ACS Appl Mater Interfaces 12:9833–9841. https://doi.org/10.1021/acsami.9b22613

    Article  CAS  Google Scholar 

  32. Yang X, Guo L, Xu X, Shang S, Liu H (2020) A fully bio-based epoxy vitrimer: Self-healing, triple-shape memory and reprocessing triggered by dynamic covalent bond exchange. Mater Des 186:108248. https://doi.org/10.1016/j.matdes.2019.108248

    Article  CAS  Google Scholar 

  33. Wang Y, Pan Y, Zheng Z, Ding X (2019) Reprocessable and multiple shape memory thermosets with reconfigurability. Macromol Rapid Commun 40:1900001. https://doi.org/10.1002/marc.201900001

    Article  CAS  Google Scholar 

  34. Wang W, Wang F, Zhang C, Wang Z, Tang J, Zeng X, Wan X (2020) Robust, reprocessable, reconfigurable cellulose-based multiple-shape memory polymer enabled by dynamic metal-ligand bonds. ACS Appl Mater Interfaces 12:25233–25242. https://doi.org/10.1021/acsami.9b13316

    Article  CAS  Google Scholar 

  35. Niu X, Wang F, Kui X, Zhang R, Wang X, Li X, Chen T, Sun P, Shi AC (2019) Dual cross-linked vinyl vitrimer with efficient self-catalysis achieving triple-shape-memory properties. Macromol Rapid Commun 40:1900313. https://doi.org/10.1002/marc.201900313

    Article  CAS  Google Scholar 

  36. Ji F, Liu X, Lin C, Zhou Y, Dong L, Xu S, Sheng D, Yang Y (2018) Reprocessable and recyclable crosslinked polyethylene with triple shape memory effect. Macromol Mater Eng 304:1800528. https://doi.org/10.1002/mame.201800528

    Article  CAS  Google Scholar 

  37. Tang Z, Liu Y, Guo B, Zhang L (2017) Malleable, mechanically strong, and adaptive elastomers enabled by interfacial exchangeable bonds. Macromolecules 50:7584–7592. https://doi.org/10.1021/acs.macromol.7b01261

    Article  CAS  Google Scholar 

  38. Ding Z, Yuan L, Liang G, Gu A (2019) Thermally resistant thermadapt shape memory crosslinked polymers based on silyl ether dynamic covalent linkages for self-folding and self-deployable smart 3D structures. J Mater Chem A 7:9736–9747. https://doi.org/10.1039/c9ta01147a

    Article  CAS  Google Scholar 

  39. Zhang Y, Yuan L, Liang G, Gu A (2018) Developing reversible self-healing and malleable epoxy resins with high performance and fast recycling through building cross-linked network with new disulfide-containing hardener. Ind Eng Chem Res 57:12397–12406. https://doi.org/10.1021/acs.iecr.8b02572

    Article  CAS  Google Scholar 

  40. Xie T (2010) Tunable polymer multi-shape memory effect. Nature 464:267–270. https://doi.org/10.1038/nature08863

    Article  CAS  Google Scholar 

  41. Phelan J, Sung C (1997) Cure characterization in bis(maleimide)-diallylbisphenol a resin by fluorescence, FT-IR, and UV-reflection spectroscopy. Macromolecules 30:6845–6851. https://doi.org/10.1021/ma961887f

    Article  CAS  Google Scholar 

  42. Chen Y, Dai Q, Zhang X, Feng T (2014) Microstructure and properties of SCE-Al2O3/PES-MBAE composite. J Nanomater. https://doi.org/10.1155/2014/356273

    Article  Google Scholar 

  43. Davy KW, Kalachandra S, Pandain MS, Braden M (1998) Relationship between composite matrix molecular structure and properties. Biomaterials 19:2007–2014. https://doi.org/10.1016/S0142-9612(98)00047-7

    Article  CAS  Google Scholar 

  44. Yang Z, Wang Q, Wang T (2016) Dual-triggered and thermally reconfigurable shape memory graphene-vitrimer composites. ACS Appl Mater Interfaces 8:21691–21699. https://doi.org/10.1021/acsami.6b07403

    Article  CAS  Google Scholar 

  45. Kuang X, Guo E, Chen K, Qi HJ (2019) Extraction of biolubricant via chemical recycling of thermosetting polymers. ACS Sustain Chem Eng 7:6880–6888. https://doi.org/10.1021/acssuschemeng.8b06409

    Article  CAS  Google Scholar 

  46. Ware TH, McConney ME, Wie JJ, Tondiglia VP, White TJ (2015) Voxelated liquid crystal elastomers. Science 347:982–984. https://doi.org/10.1126/science.1261019

    Article  CAS  Google Scholar 

  47. Erb RM, Libanori R, Rothfuchs N, Studart AR (2012) Composites reinforced in three dimensions by using low magnetic fields. Science 335:199–204. https://doi.org/10.1126/science.1210822

    Article  CAS  Google Scholar 

  48. Stuart MA, Huck WT, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113. https://doi.org/10.1038/nmat2614

    Article  CAS  Google Scholar 

  49. Zheng N, Hou J, Xu Y, Fang Z, Zou W, Zhao Q, Xie T (2017) Catalyst-free thermoset polyurethane with permanent shape reconfigurability and highly tunable triple-shape memory performance. ACS Macro Lett 6:326–330. https://doi.org/10.1021/acsmacrolett.7b00037

    Article  CAS  Google Scholar 

  50. Zhao Q, Zou W, Luo Y, Xie T (2016) Shape memory polymer network with thermally distinct elasticity and plasticity. Sci Adv 2:1501297. https://doi.org/10.1126/sciadv.1501297

    Article  CAS  Google Scholar 

  51. Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057. https://doi.org/10.1002/1521-3773(20020617)41:12%3c2034:AID-ANIE2034%3e3.0.CO;2-M

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is financially supported by National Natural Science Foundation of China (51873135), Key Major Program of Natural Science Fundamental Research Project of Jiangsu Colleges and Universities (18KJA430013) and Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guozheng Liang or Aijuan Gu.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 942 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, L., Yuan, L., Liang, G. et al. Thermally resistant and strong remoldable triple-shape memory thermosets based on bismaleimide with transesterification. J Mater Sci 56, 3623–3637 (2021). https://doi.org/10.1007/s10853-020-05469-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05469-7

Navigation