Skip to main content
Log in

Wafer-scale epitaxial single-crystalline Ni(111) films on sapphires for graphene growth

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The growth of graphene on Ni magnetic films is of great significance for graphene spintronics, whereas the existence of grain boundaries and twin crystal structures in Ni films is an obstacle for obtaining the large-scale and uniform graphene. In this paper, an epitaxial wafer-scale single-crystalline Ni(111) film with the flat and clean surface was successfully prepared on the commercial α-Al2O3(0001) substrate by a two-step method, which was demonstrated with several characterization methods. According to the abnormal grain growth mechanism, the clean and uniform sapphire surface plays a key role for the single crystallization of Ni films as it induces a weak interface energy difference between two atomic stacking structures (ABC and ACB), thus stimulating the evolution of Ni films from (111) out-of-plane textures to single crystals. Furthermore, an ultra-flat and wrinkle-free graphene monolayer was synthesized on the prepared Ni film, which further verified its high quality and effectiveness.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

taken from one Ni film sample and the corresponding EBSD in-plane map (b) of the same region. ch Three typical comparisons between AFM images and XRD patterns of Ni(111) films. Top row (ce) shows AFM images and bottom row (fh) shows corresponding XRD patterns. (i) Relation curve between the proportion of the blue region area (RA) and that of the first set of diffraction peak intensity (RI)

Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Avouris P (2010) Graphene: electronic and photonic properties and devices. Nano Lett 10:4285–4294

    Article  CAS  Google Scholar 

  3. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat photonics 4:611–622

    Article  CAS  Google Scholar 

  4. Liu Y et al (2012) Mechanical properties of graphene papers. J Mech Phys Solids 60:591–605

    Article  CAS  Google Scholar 

  5. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Article  CAS  Google Scholar 

  6. Muñoz R, Gómez-Aleixandre C (2013) Review of CVD synthesis of graphene. Chem Vap Depos 19:297–322

    Article  Google Scholar 

  7. Tetlow H, de Boer JP, Ford IJ, Vvedensky DD, Coraux J, Kantorovich L (2014) Growth of epitaxial graphene: theory and experiment. Phys Rep 542:195–295

    Article  CAS  Google Scholar 

  8. Naghdi S, Rhee KY, Park SJ (2018) A catalytic, catalyst-free, and roll-to-roll production of graphene via chemical vapor deposition: low temperature growth. Carbon 127:1–12

    Article  CAS  Google Scholar 

  9. Zhang J, Lin L, Jia K, Sun L, Peng H, Liu Z (2020) Controlled growth of single-crystal graphene films. Adv Mater 32:1903266

    Article  CAS  Google Scholar 

  10. Yoshii S, Nozawa K, Toyoda K, Matsukawa N, Odagawa A, Tsujimura A (2011) Suppression of inhomogeneous segregation in graphene growth on epitaxial metal films. Nano Lett 11:2628–2633

    Article  CAS  Google Scholar 

  11. Zhang Y, Gomez L, Ishikawa FN, Madaria A, Ryu K, Wang C, Badmaev A, Zhou C (2010) Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. J Phys Chem Lett 1:3101–3107

    Article  CAS  Google Scholar 

  12. Deng B, Pang Z, Chen S, Li X, Meng C, Li J, Liu M, Wu J, Qi Y, Dang W, Yang H, Zhang Y, Zhang J, Kang N, Xu H, Fu Q, Qiu X, Gao P, Wei Y, Liu Z, Peng H (2017) Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano 11:12337–12345

    Article  CAS  Google Scholar 

  13. Deng B, Xin Z, Xue R, Zhang S, Xu X, Gao J, Tang J, Qi Y, Wang Y, Zhao Y, Sun L, Wang H, Liu K, Rummeli MH, Weng LT, Luo Z, Tong L, Zhang X, Xie C, Liu Z, Peng H (2019) Scalable and ultrafast epitaxial growth of single-crystal graphene wafers for electrically tunable liquid-crystal microlens arrays. Sci Bull 64:659–668

    Article  CAS  Google Scholar 

  14. Zhang X, Wu T, Jiang Q, Wang H, Zhu H, Chen Z, Jiang R, Niu T, Li Z, Zhang Y, Qiu Z, Yu G, Li A, Qiao S, Wang H, Yu Q, Xie X (2019) Epitaxial growth of 6 in. Single-crystalline graphene on a Cu/Ni(111) film at 750 °C via chemical vapor deposition. Small 15:e1805395

    Article  Google Scholar 

  15. Addou R, Dahal A, Sutter P, Batzill M (2012) Monolayer graphene growth on Ni(111) by low temperature chemical vapor deposition. Appl Phys Lett 100:021601

    Article  Google Scholar 

  16. Lahiri J, Miller TS, Ross AJ, Adamska L, Oleynik II, Batzill M (2011) Graphene growth and stability at nickel surfaces. New J Phys 13:025001

    Article  Google Scholar 

  17. Gong Y, Zhang X, Liu G, Wu L, Geng X, Long M, Cao X, Guo Y, Li W, Xu J, Sun M, Lu L, Liu L (2012) Layer-controlled and wafer-scale synthesis of uniform and high-quality graphene films on a polycrystalline nickel catalyst. Adv Funct Mater 22:3153–3159

    Article  CAS  Google Scholar 

  18. Orofeo CM, Ago H, Hu B, Tsuji M (2011) Synthesis of large area, homogeneous, single layer graphene films by annealing amorphous carbon on Co and Ni. Nano Res 4:531–540

    Article  CAS  Google Scholar 

  19. Lahiri J, Miller T, Adamska L, Oleynik II, Batzill M (2011) Graphene growth on Ni(111) by transformation of a surface carbide. Nano Lett 11:518–522

    Article  CAS  Google Scholar 

  20. Baraton L, He ZB, Lee CS, Cojocaru CS, Chatelet M, Maurice J-L, Lee YH, Pribat D (2011) On the mechanisms of precipitation of graphene on nickel thin films. Europhys Lett 96:46003

    Article  Google Scholar 

  21. Karpan VM, Khomyakov PA, Starikov AA, Giovannetti G, Zwierzycki M, Talanana M, Brocks G, van den Brink J, Kelly PJ (2008) Theoretical prediction of perfect spin filtering at interfaces between close-packed surfaces of Ni or Co and graphite or graphene. Phys Rev B 78:195419

    Article  Google Scholar 

  22. Karpan VM, Giovannetti G, Khomyakov PA, Talanana M, Starikov AA, Zwierzycki M, van den Brink J, Brocks G, Kelly PJ (2007) Graphite and graphene as perfect spin filters. Phys Rev Lett 99:176602

    Article  CAS  Google Scholar 

  23. Dlubak B, Martin MB, Weatherup RS, Yang H, Deranlot C, Blume R, Schloegl R, Fert A, Anane A, Hofmann S, Seneor P, Robertson J (2012) Graphene-passivated nickel as an oxidation-resistant electrode for spintronics. ACS Nano 6:10930–10934

    Article  CAS  Google Scholar 

  24. Entani S, Seki T, Sakuraba Y, Yamamoto T, Takahashi S, Naramoto H, Takanashi K, Sakai S (2016) Magnetoresistance effect in Fe20Ni80/graphene/Fe20Ni80 vertical spin valves. Appl Phys Lett 109:082406

    Article  Google Scholar 

  25. Cobas ED, van’t Erve OMJ, Cheng SF, Culbertson JC, Jernigan GG, Bussman K, Jonker BT (2016) Room-temperature spin filtering in metallic ferromagnet-multilayer graphene-ferromagnet junctions. ACS Nano 10:10357–10365

    Article  CAS  Google Scholar 

  26. Miller DL, Keller MW, Shaw JM, Chiaramonti AN, Keller RR (2012) Epitaxial (111) films of Cu, Ni, and CuxNiy on α-Al2O3(0001) for graphene growth by chemical vapor deposition. J Appl Phys 112:064317

    Article  Google Scholar 

  27. Meng J, Zhang X, Wang Y, Yin Z, Liu H, Xia J, Wang H, You J, Jin P, Wang D, Meng XM (2017) Aligned growth of millimetre-size hexagonal boron nitride single-crystal domains on epitaxial nickel thin film. Small 13:1604179

    Article  Google Scholar 

  28. Iwasaki T, Park HJ, Konuma M, Lee DS, Smet JH, Starke U (2011) Long-range ordered single-crystal graphene on high-quality heteroepitaxial Ni thin films grown on MgO(111). Nano Lett 11:79–84

    Article  CAS  Google Scholar 

  29. Eng PJ, Trainor TP, Brown GE Jr, Waychunas GA, Newville M, Sutton SR, Rivers ML (2000) Structure of the hydrated α-Al2O3(0001) surface. Science 288:1029–1033

    Article  CAS  Google Scholar 

  30. Bialas H, Heneka K (1994) Epitaxy of fcc metals on dielectric substrates. Vacuum 45:79–87

    Article  CAS  Google Scholar 

  31. Kacher J, Hattar K, Robertson IM (2016) Initial texture effects on the thermal stability and grain growth behavior of nanocrystalline Ni thin films. Mater Sci Eng A 675:110–119

    Article  CAS  Google Scholar 

  32. Frost HJ, Thompson CV, Walton DT (1992) Abnormal grain growth in thin films due to anisotropy of free-surface energies. Mater Sci Forum 94–96:543–550

    Article  Google Scholar 

  33. Cheng S, Cobas E, van’t Erve OMJ, Jonker BT (2016) Preparation and characterization of bottom ferromagnetic electrode for graphene based magnetic junction. J Magn Magn Mater 401:906–913

    Article  CAS  Google Scholar 

  34. Fogarassy Z, Dobrik G, Varga LK, Biró LP, Lábár JL (2013) Growth of Ni layers on single crystal sapphire substrates. Thin Solid Films 539:96–101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Yu Zhu, Wei Wei, Xiao Chen in Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, for the helpful discussions. This work is supported by National Natural Science Foundation of China (Grant Nos. 62004223, 11604384, 61671460 and 51507178), China Postdoctoral Science Foundation (Grant No. 2016M603000) and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF202012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fangsen Li or Peisen Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Peng, J., Pan, M. et al. Wafer-scale epitaxial single-crystalline Ni(111) films on sapphires for graphene growth. J Mater Sci 56, 3220–3229 (2021). https://doi.org/10.1007/s10853-020-05450-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05450-4

Navigation