Skip to main content
Log in

Carrier recombination dynamics in green InGaN-LEDs with quantum-dot-like structures

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Exciton localization phenomena are considered here to comprehend the high internal quantum efficiency in InGaN/GaN multiple-quantum-well structures having discrete quantum dots (QDs) prepared by metal–organic-chemical-vapor deposition method on c-sapphire substrates. Spectroscopic results from the variable-temperature steady-state-photoluminescence and time-resolved photoluminescence (TRPL) are investigated. While the exciton localization is enhanced by strong localized states within the InGaN/GaN QDs–the impact of free carrier recombination cannot be ignored. The observed non-exponential decay in TRPL measurements is explained using a model by meticulously including localized exciton, non-radiative and free carrier recombination rates. A new method is proposed to calculate the internal quantum efficiency, which is supplementary to the traditional approach based on temperature-dependent photoluminescence measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Tawfik WZ, Hyun GY, Lee SJ, Ryu SW, Ha JS, Lee JK (2018) Enhanced performance of GaN-based LEDs via electroplating of a patterned copper layer on the backside. J Mater Sci 53:8878–8886. https://doi.org/10.1007/s10853-018-2177-8

    Article  CAS  Google Scholar 

  2. Sun H, Park YJ, Li KH, Liu X, Detchprohm T, Zhang X, Dupuis RD, Li X (2018) Nearly-zero valence band and large conduction band offset at BAlN/GaN heterointerface for optical and power device application. Appl Surf Sci 458:949–953

    Article  CAS  Google Scholar 

  3. Nakamura S (2013) The blue laser diode: the complete story. In: Pearton S, Fasol G (Eds.).Springer, Berlin

  4. Z. C. Feng (2017) Handbook of solid-state lighting and LEDs. CRC, Taylor & Francis Group, New York

  5. Feng ZC (2017) III-Nitride materials devices and nano-structures. World Scientific Publishing, Singapore

    Book  Google Scholar 

  6. Jiang F, Wu X, Mo C, Ding J, Liu J, Zhang J, Wang G, Quan Z, Xu L, Wang X, Zheng C, Pan S, Guo X (2019) Efficient InGaN-based yellow-light-emitting diodes. Photon Res 7:144–148

    Article  Google Scholar 

  7. Su ZC, Wang ZL, Yu JD, Yi Y, Wang MZ, Wang L, Luo Y, Wang JN, Xu SJ (2017) Managing green emission in coupled ingan QW-QDS nanostructures via nano-engineering. J Phys Chem C 121:22523–22530

    Article  CAS  Google Scholar 

  8. Peng L, Zhao D, Zhu J, Wang W, Liang F, Jiang D, Liu Z, Chen P, Yang J, Liu S, Xing Y, Zhang L (2019) Achieving homogeneity of InGaN/GaN quantum well by well/barrier interface treatment. Appl Surf Sci 505:144283

    Article  Google Scholar 

  9. Wang L, Wang L, Yu J, Hao Z, Luo Y, Sun C, Han Y, Xiong B, Wang J, Li H (2019) Abnormal stranski-krastanow mode growth of green InGaN quantum dots: morphology, optical properties, and applications in light-emitting devices. ACS Appl Mater Interfaces 11:1228–1238

    Article  CAS  Google Scholar 

  10. Hu L, Ren XY, Liu JP, Tian AQ, Jiang LR, Huang SY, Zhou W, Zhang L, Yang H (2020) High-power hybrid GaN-based green laser diodes with ITO cladding layer. Photon Res 8:030279

    Article  Google Scholar 

  11. Higo T, Kiba S, Chen Y, Chen T, Tanikawa C, Thomas CY, Lee YC, Lai T, Ozaki J, Takayama I, Yamashita A, Murayama SS (2017) Optical study of sub-10 nm In0.3Ga0.7N quantum nanodisks in GaN nanopillars. ACS Photon 4:1851–1857

    Article  CAS  Google Scholar 

  12. Nippert F, Karpov SY, Callsen G, Galler B, Kure T, Nenstiel C, Markus R, Straßburg M, Lugauer H, Hoffmann A (2017) Temperature-dependent recombination coefficients in InGaN light-emitting diodes: hole localization, auger processes, and the green gap. Appl Phys Lett 109:161103

    Article  Google Scholar 

  13. Wang Q, Yuan GD, Liu WQ, Zhao S, Liu ZQ, Chen Y, Wang JX, Li JM (2019) Semipolar (1101) InGaN/GaN red-amber-yellow light-emitting diodes on triangular-striped Si (100) substrate. J Mater Sci 54:7780. https://doi.org/10.1007/s10853-019-03473-0

    Article  CAS  Google Scholar 

  14. Li H, Li P, Kang J, Ding J, Ma J, Zhang Y, Yi X, Wang G (2016) Broadband full-color monolithic InGaN light-emitting diodes by self-assembled InGaN quantum dots. Sci Rep 6:1–7

    Article  Google Scholar 

  15. Tsai SC, Fang HC, Lai YL, Lu CH, Liu CP (2016) Efficiency enhancement of green light emitting diodes by improving the uniformity of embedded quantum dots in multiple quantum wells through working pressure control. J Alloys Compd 669:156–160

    Article  CAS  Google Scholar 

  16. Tsai SC, Lu CH, Liu CP (2016) Piezoelectric effect on compensation of the quantum-confined Stark effect in InGaN/GaN multiple quantum wells based green light-emitting diodes. Nano Energy 28:373–379

    Article  CAS  Google Scholar 

  17. De S, Layek A, Bhattacharya S, Kumar Das D, Kadir A, Bhattacharya A, Dhar S, Chowdhury A (2012) Quantum-confined stark effect in localized luminescent centers within InGaN/GaN quantum-well based light emitting diodes. Appl Phys Lett 101:121919

    Article  Google Scholar 

  18. Cho JH, Kim YM, Lim SH, Yeo HS, Kim S, Gong SH, Cho YH (2018) Strongly coherent single-photon emission from site-controlled InGaN quantum dots embedded in GaN nano pyramids. ACS Photon 5:439–444

    Article  CAS  Google Scholar 

  19. Schulz S, O'Reilly EP (2010) Theory of reduced built-in polarization field in nitride-based quantum dots. Phys Rev B 82:033411

    Article  Google Scholar 

  20. Ma J, Ji X, Wang G, Wei X, Lu H, Yi X, Duan R, Wang J, Zeng Y, Li J, Yang F, Wang C, Zou G (2012) Anomalous temperature dependence of photoluminescence in self-assembled InGaN quantum dots. Appl Phys Lett 101:131101

    Article  Google Scholar 

  21. Park IK, Park SJ (2011) Green gap spectral range light-emitting diodes with self-assembled InGaN quantum dots formed by enhanced phase separation. Appl Phys Expr 4:042102

    Article  Google Scholar 

  22. Chichibu S, Kawakami Y, Sota T (2000) Introduction to nitride semiconductor blue lasers and light emitting diodes. Talor & Francis, London

    Google Scholar 

  23. Morel P, Lefebvre S, Kalliakos T, Taliercio T, Bretagnon BG (2003) Donor-acceptor-like behavior of electron-hole pair recombinations in low-dimensional (Ga, In)N/GaN systems. Phys Rev B-Condens Matter Mater Phys 68:1–6

    Article  Google Scholar 

  24. Johnston DC (2006) Stretched exponential relaxation arising from a continuous sum of exponential decays. Phys Rev B-Condens Matter Mater Phys 74:1–7

    Article  Google Scholar 

  25. Li ZC, Liu JP, Feng MX, Zhou K, Zhang SM, Wang H, Li DY, Zhang LQ, Sun Q, Jiang DS, Wang HB, Yang H (2013) Effects of matrix layer composition on the structural and optical properties of self-organized InGaN quantum dots. J Appl Phys 114:093105

    Article  Google Scholar 

  26. Dawson P, Schulz S, Oliver RA, Kappers MJ, Humphreys CJ (2016) The nature of carrier localization in polar and nonpolar InGaN/GaN quantum wells. J Appl Phys 119:181505

    Article  Google Scholar 

  27. Wang L, Hao Z, Han Y, Sun C, Li H, Yang D, Xing Y, Luo Y, Wang Z, Xiong B, Wang J (2017) A novel model on time-resolved photoluminescence measurements of polar InGaN/GaN multi-quantum-well structures. Sci Rep 7:1–9

    Article  Google Scholar 

  28. Li H, Li P, Kang J, Li Z, Zhang Y, Liang M, Li Z, Li J, Yi X, Wang G (2013) Analysis model for effciency droop of ingan light-emitting diodes based on reduced effective volume of active region by carrier localization. Appl Phys Exp 6:092101

    Article  Google Scholar 

  29. Zhao CY, Tang CW, Lai BL, Cheng GH, Wang JN, Lau KM (2020) Low-efficiency-droop InGaN quantum dot light-emitting diodes operating in the “green gap”. Photon Res 8:750–754

    Article  Google Scholar 

  30. Fu H, Lu Z, Zhao Y (2016) Analysis of low efficiency droop of semipolar InGaN quantum well light-emitting diodes by modified rate equation with weak phase-space filling effect. AIP Adv 6:065013

    Article  Google Scholar 

  31. Pristovsek M, Badcock TJ, Ali M, Oliver RA, Shields AJ, Zhu T (2016) Radiative recombination mechanisms in polar and non-polar InGaN/GaN quantum well LED structures. Appl Phys Lett 109:151110

    Article  Google Scholar 

  32. Hums C, Finger T, Hempel T, Christen J, Dadgar A, Hoffmann A, Krost A (2007) Fabry-Perot effects in InGaN/GaN heterostructures on Si-substrate. J Appl Phys 101:033113

    Article  Google Scholar 

  33. Feng SW, Cheng YC, Chuang YY, Yang CC, Lin YS, Hsu C, Ma KJ, Chyi JI (2002) Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures. J Appl Phys 92:4441–4448

    Article  CAS  Google Scholar 

  34. Cho YH, Gainer GH, Fischer AJ, Song JJ, Keller S, Mishra UK, Denbaars SP (1998) “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl Phys Lett 73:1370–1372

    Article  CAS  Google Scholar 

  35. Iwata Y, Oto T, Gachet D, Banal RG, Funato M, Kawakami Y (2015) Co-existence of a few and sub-micron in homogeneities in Al-rich AlGaN/AlN quantum wells. J Appl Phys 117:1–8

    Google Scholar 

  36. Okur S, Rishinaramangalam AK, Masabih SMU, Nami M, Liu S, Brener I, Brueck SRJ, Feezell DF (2018) Spectrally-resolved internal quantum efficiency and carrier dynamics of semi-polar (10–11) core-shell triangular nanostripe GaN/InGaN LEDs. Nanotechnology 29:235206

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.61367004), the Guangxi Natural Science Foundation (2018GXNSFAA138127), the special funding for Guangxi distinguished professors (Bagui Rencai & Bagui Xuezhe), and the project supported by State Key Laboratory of Luminescence and Applications (No SKLA-2019-06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Lin or Zhe Chuan Feng.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, M., Ma, C., Lin, T. et al. Carrier recombination dynamics in green InGaN-LEDs with quantum-dot-like structures. J Mater Sci 56, 1481–1491 (2021). https://doi.org/10.1007/s10853-020-05343-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05343-6

Navigation