Skip to main content
Log in

Effects of annealing temperature and heating rate on microstructure, magnetic, and mechanical properties of high-Bs Fe81.7−xSi4B13NbxCu1.3 nanocrystalline alloys

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of annealing temperature and heating rate on the microstructure, magnetic, and mechanical properties of melt-spun Fe81.7−xSi4B13Cu1.3Nbx (x = 0–4) alloy ribbons have been investigated. With increasing the annealing temperature, a ductile–brittle transition occurs during amorphous structure relaxation, the brittleness becomes severe with more α-Fe precipitation, and the hardness rises continuously. After annealing at respective optimum temperatures under the heating rate of 20 K/min, as the Nb content increases from 0 to 4 at.%, average grain size (Dα-Fe) and volume fraction (Vα-Fe) of the α-Fe in the nanocrystalline alloys decrease gradually from 53.3 nm and 52% to 8.7 nm and 42%, respectively; the strain at fracture (εf) representing ductile level increases from 1.33 to 1.72%; and the coercivity (Hc), saturation magnetic flux densities (Bs), and Vickers hardness (Hv) all decrease gradually. As the heating rate rises from 10 to 400 K/min, the Dα-Fe of the Fe81.7Si4B13Cu1.3 alloy decreases from 45.7 to 28.4 nm without considerable variation of the Vα-Fe; the Hc lowers from 235 to 25 A/m, the εf increases from 1.10 to 1.66%, and the Bs and Hv change slightly. Enriching of Nb weakens the dependence of nanostructure, magnetic softness, and annealing embrittlement on the heating rate. A correlation of εf ∝ Dα-Fen is found for the nanocrystalline alloys, where the n rises from − 1 to − 1/2 with enriching of Nb from 0 to 4 at.%. The mechanisms by which nanostructure affects magnetic and mechanical properties have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. McHenry ME, Willard MA, Laughlin DE (1999) Amorphous and nanocrystalline materials for applications as soft magnets. Prog Mater Sci 44:291–433

    Article  CAS  Google Scholar 

  2. Herzer G (2013) Modern soft magnets: amorphous and nanocrystalline materials. Acta Mater 61:718–734

    Article  CAS  Google Scholar 

  3. Petzold J (2002) Advantages of soft magnetic nanocrystalline materials for modern electronic applications. J Magn Magn Mater 242–245:84–89

    Article  Google Scholar 

  4. Yoshizawa Y, Oguma S, Yamauchi K (1988) New Fe-based soft magnetic alloys composed of ultrafine grain structure. J Appl Phys 64:6044–6046

    Article  CAS  Google Scholar 

  5. Ohta M, Yoshizawa Y (2007) New high-Bs Fe-based nanocrystalline soft magnetic alloys. Jpn J Appl Phys 46:L477–L479

    Article  CAS  Google Scholar 

  6. Li YH, Jia XJ, Xu YQ, Chang CT, Xie GQ, Zhang W (2017) Soft magnetic Fe–Si–B–Cu nanocrystalline alloys with high Cu concentrations. J Alloys Compd 722:859–863

    Article  CAS  Google Scholar 

  7. Makino A, Kubota T, Yubuta K, Inoue A, Matsumoto H, Yoshida S (2011) Low core losses and magnetic properties of Fe85–86Si1–2B8P4Cu1 nanocrystalline alloys with high Bs for power applications. J Appl Phys 109(7):07A302-1–07A302-5

    Article  Google Scholar 

  8. Shurygina NA, Glezer AM, Permyakova IE, Blinova EN (2012) Effect of nanocrystallization on the mechanical and magnetic properties of Finemet-type alloy (Fe73.5Si13.5B9Nb3Cu1). Bull Russ Acad Sci Phys 76:44–50

    Article  CAS  Google Scholar 

  9. Um CY, Johnson F, Simone M, Barrow J, McHenry ME (2005) Effect of crystal fraction on hardness in FINEMET and NANOPERM nanocomposite alloys. J Appl Phys 97:10F504–1–10F504-3

    Article  Google Scholar 

  10. Škorvánek I, Švec P, Grenèche J-M, Kovác J, Marcin J, Gerling R (2002) Influence of microstructure on the magnetic and mechanical behaviour of amorphous and nanocrystalline FeNbB alloy. J Phys Condens Matter 14:4717–4736

    Article  Google Scholar 

  11. Sun YY, Song M, Liao XZ, Sha G, He YH (2002) Effects of isothermal annealing on the microstructures and mechanical properties of a FeCuSiBAl amorphous alloy. Mater Sci Eng A 543:145–151

    Article  Google Scholar 

  12. Gavrilović A, Rafailović LD, Minić DM, Wosik J, Angerer P, Minić DM (2011) Influence of thermal treatment on structure development and mechanical properties of amorphous Fe735Cu1Nb3Si155B7 ribbon. J Alloys Compd 509S:S119–S122

    Article  Google Scholar 

  13. Škorvánek I, Gerling R (1992) The influence of neutron irradiation on the soft magnetic and mechanical properties of amorphous and nanocrystalline Fe735Cu1Nb3Si135B9 alloys. J Appl Phys 72:3417–3422

    Article  Google Scholar 

  14. Koch CC, Malow TR (1999) The ductility problem in nanocrystalline materials. Mater Sci Forum 312–314:565–574

    Article  Google Scholar 

  15. Minnert C, Kuhnt M, Bruns S, Marshal A, Pradeep KG, Marsilius M, Bruder E, Durst K (2018) Study on the embrittlement of flash annealed Fe852B95P4Cu08Si05 metallic glass ribbons. Mater Design 156:252–261

    Article  CAS  Google Scholar 

  16. Komatsu T, Matusita K, Yokota R (1985) Structural relaxation and embrittlement in Fe-Ni based metallic glasses. J Mater Sci 20:1375–1382. https://doi.org/10.1007/BF01026335

    Article  CAS  Google Scholar 

  17. Wu TW, Spaepen F (1990) The relation between embrittlement and structural relaxation of an amorphous metal. Philos Mag B 61:739–750

    Article  CAS  Google Scholar 

  18. Gerling R, Schimansky FP (1988) R Wagner Two-stage embrittlement of amorphous Fe40Ni40P20 resulting from a loss of free volume and phase separation. Acta Metall 36:575–583

    Article  CAS  Google Scholar 

  19. Kumar G, Ohnuma M, Furubayashi T, Ohkubo T, Hono K (2008) Thermal embrittlement of Fe-based amorphous ribbons. J Non-Cryst Solids 354:882–888

    Article  CAS  Google Scholar 

  20. Škorvánek I, Duhaj P, Kovác J, Kavečanský V, Gerling R (1997) Influence of microstructure on magnetic and mechanical behavior in amorphous and nanocrystalline Fe735Nb45Cr5CulB16 alloy. Mater Sci Eng A 226–228:218–222

    Article  Google Scholar 

  21. Jia XJ, Li YH, Wu LC, Zhang W (2020) A study on the role of Ni content on structure and properties of Fe-Ni-Si-B-P-Cu nanocrystalline alloys. J Alloys Compd 822:152784–1–152784-6

    Article  Google Scholar 

  22. Wu LC, Li YH, Yubuta K, He AN, Zhang Y, Zhang W (2020) Optimization of the structure and soft magnetic properties of a Fe87B13 nanocrystalline alloy by additions of Cu and Nb. J Magn Magn Mater 497:166001–1–166001-6

    Article  Google Scholar 

  23. Sharma P, Zhang X, Zhang Y, Makino A (2015) Competition driven nanocrystallization in high Bs and low coreloss Fe–Si–B–P–Cu soft magnetic alloys. Scripta Mater 95:3–6

    Article  CAS  Google Scholar 

  24. Jia XJ, Li YH, Wu LC, Zhang Y, Xie L, Zhang W (2019) The role of Cu content on structure and magnetic properties of Fe–Si–B–P–Cu nanocrystalline alloys. J Mater Sci 54:4400–4408. https://doi.org/10.1007/s10853-018-3131-5.

    Article  CAS  Google Scholar 

  25. Farkas D, Hyde B (2005) Improving the ductility of nanocrystalline bcc metals. Nano Lett 5:2403–2407

    Article  CAS  Google Scholar 

  26. Yang F, Yang W (2009) Crack growth versus blunting in nanocrystalline metals with extremely small grain size. J Mech Phys Solids 57:305–324

    Article  CAS  Google Scholar 

  27. Daniil M, Ohodnicki PR, McHenry ME, Willard MA (2010) Shear band formation and fracture behavior of nanocrystalline (Co, Fe)-based alloys. Philos Mag 90:1547–1565

    Article  CAS  Google Scholar 

  28. Wu C, Chen HP, Lv HP, Yan M (2016) Interplay of crystallization, stress relaxation and magnetic properties for FeCuNbSiB soft magnetic composites. J Alloy Compd 673:278–282

    Article  CAS  Google Scholar 

  29. Senkov ON, Miracle DB (2001) Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater Res Bull 36:2183–2198

    Article  CAS  Google Scholar 

  30. Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46:2817–2829

    Article  CAS  Google Scholar 

  31. Wang WH (2007) Roles of minor additions in formation and properties of bulk metallic glasses. Prog Mater Sci 52:540–595

    Article  CAS  Google Scholar 

  32. Hono K (2002) Nanoscale microstructural analysis of metallic materials by atom probe field ion microscopy. Prog Mater Sci 47:621–729

    Article  CAS  Google Scholar 

  33. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  34. Glezer AM, Manaenkov SE, Permyakova IE, Shurygina NA (2011) Effect of nanocrystallization on the mechanical behavior of amorphous Fe-Ni-based alloys. Russ Metall 2011:947–955

    Article  Google Scholar 

  35. Zielinski PG, Ast DG (1984) Yield and reformation of metallic glasses strengthened by post-extrusion addition of second phase particles. Acta Metall 32:397–405

    Article  CAS  Google Scholar 

  36. Donald IW, Davies HA (1980) The influence of transition metal substitutions on the formation, stability and hardness of some Fe and Ni-based metallic glasses. Philo Mag A 42:277–293

    Article  CAS  Google Scholar 

  37. Suzuki K, Herzer G (2012) Magnetic-field-induced anisotropies and exchange softening in Fe-rich nanocrystalline soft magnetic alloys. Scripta Mater 67:548–553

    Article  CAS  Google Scholar 

  38. Ohta M, Yoshizawa Y (2009) High Bs nanocrystalline Fe84−x−yCuxNbySi4B12 alloys (x=0.0–1.4, y=0.0–2.5). J Magn Magn Mater 321:2220–2224

    Article  CAS  Google Scholar 

  39. Wang AD, Zhao CL, He AN, Men H, Chang CT, Wang XM (2016) Composition design of high Bs Fe-based amorphous alloys with good amorphous-forming ability. J Alloys Compd 656:729–734

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China [Grant Number 2017YFB0903903]; the National Natural Science Foundation of China [Grant Numbers 51571047, 51771039]; and the Fundamental Research Funds for the Central Universities [Grant Number DUT20JC12].

Author information

Authors and Affiliations

Authors

Contributions

YHL contributed to formal analysis, writing—review and editing. GZZ contributed to investigation, writing—original draft. LCW contributed to investigation. WZ contributed to supervision, writing—review and editing.

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, G., Wu, L. et al. Effects of annealing temperature and heating rate on microstructure, magnetic, and mechanical properties of high-Bs Fe81.7−xSi4B13NbxCu1.3 nanocrystalline alloys. J Mater Sci 56, 2572–2583 (2021). https://doi.org/10.1007/s10853-020-05341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05341-8

Navigation