Skip to main content
Log in

Flame retardant composites of ladder phenyl/vinyl polysilsesquioxane-reinforced vinyl ester

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An unsaturated ladder phenyl/vinyl polysilsesquioxane (PhVPOSS) was synthesized and applied to vinyl ester resin (VER) thermosets. The compatibility, mechanical properties, thermal properties, and combustion behavior of the VER-PhVPOSS composites were further investigated. As a result, the PhVPOSS and VER had a good compatibility and interaction based on the solubility parameters and Flory–Huggins parameters. PhVPOSS provided the VER with a significantly enhanced bending strength, thermal stability, and smoke-suppression effect. When 20 wt% PhVPOSS was added, the bending strength, flexural modulus, and breaking force increased by195.6%, 260.6%, and 196.6% compared with pure VER. The peak heat release rate, total smoke release, and specific optical density decreased by 52.2%, 20.7%, and 15.7%, respectively. These favorable characteristics indicated that PhVPOSS had a good application prospect in unsaturated polyester resin.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Fig. 11

Similar content being viewed by others

References

  1. He S, Qian Y, Liu K, Macosko CW, Stein A (2018) Effects of inorganic fillers on toughening of vinyl ester resins by modified graphene oxide. Ind Eng Chem Res 57:4592–4599

    CAS  Google Scholar 

  2. Kootsookos A, Burchill PJ (2004) The effect of the degree of cure on the corrosion resistance of vinyl ester/glass fibre composites. Compos Part A-Appl Sci Manuf 35:501–508

    Google Scholar 

  3. Sabet SM, Mahfuz H, Terentis AC, Nezakat M, Hashemi J (2018) Effects of POSS functionalization of carbon nanotubes on microstructure and thermomechanical behavior of carbon nanotube/polymer nanocomposites. J Mater Sci 53:8963–8977. https://doi.org/10.1007/s10853-018-2182-y

    Article  CAS  Google Scholar 

  4. Mao W, Li S, Li M, Yang X, Song J, Wang M, Huang K (2016) A novel flame retardant UV‐curable vinyl ester resin monomer based on industrial dipentene: preparation, characterization, and properties. J Appl Polym Sci 133.

  5. Alia C, Jofre-Reche JA, Suárez JC, Arenas JM, Martín-Martínez JM (2018) Characterization of the chemical structure of vinyl ester resin in a climate chamber under different conditions of degradation. Polym Degrad Stabil 153:88–99

    CAS  Google Scholar 

  6. Rafi-ud-din AM, Saleem A, Shahzad M, Subhani T, Hussain S (2016) Fabrication and characterization of bipolar plates of vinyl ester resin/graphite-based composite for polymer electrolyte membrane fuel cells. J Thermoplast Compos Mater 29:1315–1331

    CAS  Google Scholar 

  7. Ahmed SN, Prabhakar MN, Song JI (2018) Influence of silane-modified Vinyl ester on the properties of Abaca fiber reinforced composites. Adv Polym Technol 37:1970–1978

    CAS  Google Scholar 

  8. Gopinath R, Poopathi R, Saravanakumar SS (2019) Characterization and structural performance of hybrid fiber-reinforced composite deck panels. Adv Composites Hybrid Mater 2:115–124

    CAS  Google Scholar 

  9. Das R, Vupputuri S, Hu Q, Chen Y, Colorado H, Guo Z, Wang Z (2020) Synthesis and characterization of antiflammable vinyl ester resin nanocomposites with surface functionalized nanotitania. ES Mater Manufact 8:46–53. https://doi.org/10.30919/esmm5f709

    Article  Google Scholar 

  10. Koomson C, Zeltmann SE, Gupta N (2018) Strain rate sensitivity of polycarbonate and vinyl ester from dynamic mechanical analysis experiments. Adv Composites Hybrid Mater 1:341–346

    CAS  Google Scholar 

  11. Chen J, Zhao S, Hu W, Zhang J, Dong M, Liu H, Huang Z, Liu Y, Wang Z, Guo Z (2019) Vinyl ester resin nanocomposites reinforced with carbon nanotubes modified basalt fibers. Sci Adv Mater 11:1340–1347

    CAS  Google Scholar 

  12. Wu Z, Li L, Guo N, Yang R, Jiang D, Zhang M, Zhang M, Huang Y, Guo Z (2019) Effect of a vinyl ester-carbon nanotubes sizing agent on interfacial properties of carbon fibers reinforced unsaturated polyester composites. ES Mater Manufact 6:38–48. https://doi.org/10.30919/esmm5f601

    Article  Google Scholar 

  13. Bach QV, Manh VuC, Vu HT, Nguyen DD (2019) Using hybrid fillers of nano/micro glass fiber and fly ash as novel toughener for enhancing the interlaminar fracture toughness of vinyl ester resin filled with carbon fiber based composite. Compos Interface 27:289–305

    Google Scholar 

  14. Wu Z, Cui H, Chen L, Jiang D, Weng L, Ma Y, Zhang J (2018) Interfacially reinforced unsaturated polyester carbon fiber composites with a vinyl ester-carbon nanotubes sizing agent. Compos Sci Technol 164:195–203

    CAS  Google Scholar 

  15. Jiang D, Huan Y, Sun C, Hu C, Guo J, Long J, Guo Z (2016) Thermal, mechanical and magnetic properties of functionalized magnetite/vinyl ester nanocomposites. RSC Adv 6:91584–91593

    CAS  Google Scholar 

  16. Kumar S, Satapathy BK, Patnaik A (2011) Thermo-mechanical correlations to erosion performance of short carbon fibre reinforced vinyl ester resin composites. Mater Des 32:2260–2268

    Google Scholar 

  17. Zhang D, Sun J, Lee LJ, Castro JM (2020) Overview of ultrasonic assisted manufacturing multifunctional carbon nanotube nanopaper based polymer nanocomposites. Eng Sci 10:35–50. https://doi.org/10.30919/es5e1002

    Article  Google Scholar 

  18. He Y, Wu D, Zhou M, Liu H, Zhang L, Chen Q, Yao B, Yao D, Jiang D, Liu C, Guo Z (2020) Effect of MoO3/carbon nanotubes on friction and wear performance of glass fabric-reinforced epoxy composites under dry sliding. Appl Surface Sci 506:144946

    Google Scholar 

  19. Wang J, Shi Z, Wang X, Mai X, Fan R, Liu H, Wang X, Guo Z (2018) Enhancing dielectric performance of poly(vinylidene fluoride) nanocomposites via controlled distribution of carbon nanotubes and barium titanate nanoparticles. Eng Sci 4:79–86. https://doi.org/10.30919/es8d759

    Article  Google Scholar 

  20. Wu M, Ge S, Jiao C, Yan Z, Jiang H, Zhu Y, Dong B, Dong M, Guo Z (2020) Improving electrical, mechanical, thermal and hydrophobic properties of waterborne acrylic resin-glycidyl methacrylate (GMA) by adding multi-walled carbon nanotubes. Polymer 200:122547

    CAS  Google Scholar 

  21. Hou P, Li R, Li Q, Lu N, Wang K, Liu M, Cheng X, Shah S (2018) Novel superhydrophobic cement-based materials achieved by construction of hierarchical surface structure with FAS/SiO2 hybrid nanocomposites. ES Mater Manufact 1:57–66. https://doi.org/10.30919/esmm5f125

    Article  Google Scholar 

  22. Zhang J, Zhang W, Wei L, Pu L, Liu J, Liu H, Li Y, Fan J, Ding T, Guo Z (2019) Alternating multilayer structural epoxy composite coating for corrosion protection of steel. Macromolecular Mater Eng 304:1900374

    CAS  Google Scholar 

  23. Ni J, Zhan R, Qiu J, Fan J, Dong B, Guo Z (2020) Multi-interfaced graphene aerogel/polydimethylsiloxane metacomposites with tunable electrical conductivity for enhanced electromagnetic interference shielding. J Mater Chem C 8:11748–11759. https://doi.org/10.1039/D0TC02278K

    Article  CAS  Google Scholar 

  24. Wen N, Jiang B, Wang X, Shang Z, Jiang D, Zhang L, Sun C, Wu Z, Yan H, Liu C, Guo Z (2020) Overview of polyvinyl alcohol nanocomposite hydrogels for electro-skin, actuator, supercapacitor and fuel cell. Chem Rec 20:1–21. https://doi.org/10.1002/tcr.202000001

    Article  CAS  Google Scholar 

  25. Shahc N, Aslam S, Ul-Islam M, Arain MB, Rehan T, Naeem M, Ullah MW, Yang G (2019) Fabrication of thermally stable graphite-based poly(acrylonitrile-co-acrylic acid) composite with impressive antimicrobial properties. Eng Sci 6:77–85. https://doi.org/10.30919/es8d758

    Article  Google Scholar 

  26. Li T, Gao Y, Zheng K, Ma Y, Ding D, Zhang H (2019) Achieving better greenhouse effect than glass: visibly transparent and low emissivity metalpolymer hybrid metamaterials. ES Energy Environ 5:102–107. https://doi.org/10.30919/esee8c325

    Article  Google Scholar 

  27. Wei H, Wang H, Li A, Cui D, Zhao Z, Chu L, Wei X, Wang L, Pan D, Fan J, Li Y, Zhang J, Liu C, Wei S, Guo Z (2020) Multifunctions of polymer nanocomposites: environmental remediation, electromagnetic interference shielding, and sensing applications. ChemNanoMat 6:174–184

    CAS  Google Scholar 

  28. Xie P, Li Y, Hou Q, Sui K, Liu C, Fu X, Zhang J, Murugadoss V, Fan J, Wang Y, Fan R, Guo Z (2020) Tunneling-induced negative permittivity in Ni/MnO nanocomposites by a bio-gel derived strategy. J Mater Chem C 8:3029–3039

    CAS  Google Scholar 

  29. Zhang L, Jiang D, Dong T, Das R, Pan D, Sun C, Wu Z, Zhang Q, Liu C, Guo Z (2020) Overview of ionogels in flexible electronics. Chem Rec 20:1–21. https://doi.org/10.1002/tcr.202000041

    Article  CAS  Google Scholar 

  30. Zheng Z, Olayinka O, Li B (2018) 2S-Soy protein-based biopolymer as a non-covalent surfactant and its effects on electrical conduction and dielectric relaxation of polymer nanocomposites. Eng Sci 4:87–99. https://doi.org/10.30919/es8d766

    Article  Google Scholar 

  31. Kashfipour MA, Mehra N, Dent RS, Zhu J (2019) Regulating intermolecular chain interaction of biopolymer with natural polyol for flexible, optically transparent and thermally conductive hybrids. Eng Sci 8:11–18

    Google Scholar 

  32. Cao B, Liu H, Yang L, Li X, Liu H, Dong P, Mai X, Hou C, Wang N, Zhang J, Fan J, Gao Q, Guo Z (2019) Interfacial engineering for high-efficiency nanorod array-structured perovskite solar cells. ACS Appl Mater Interfaces 11:33770–33780

    CAS  Google Scholar 

  33. Li S, Jasim A, Zhao W, Fu L, Ullah MW, Shi Z, Yang G (2018) Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Mater Manufact 1:41–49. https://doi.org/10.30919/esmm5f120

    Article  Google Scholar 

  34. Hottle JR, Kim HJ, Deng J, Farmer-Creely CE, Viers BD, Esker AR (2004) Blends of amphiphilic PDMS and trisilanolisobutyl-POSS at the air/water interface. Macromolecules 37:4900–4908

    CAS  Google Scholar 

  35. Wright ME, Petteys BJ, Guenthner AJ, Fallis S, Yandek GR, Tomczak SJ, Brunsvold A (2006) Chemical modification of fluorinated polyimides: new thermally curing hybrid polymers with POSS. Macromolecules 39:4710–4718

    CAS  Google Scholar 

  36. Lin OH, Ishak ZAM, Akil HM (2009) Preparation and properties of nanosilica-filled polypropylene composites with PP-methyl POSS as compatibilizer. Mater Des 30:748–751

    CAS  Google Scholar 

  37. Li C, Li X, Tao C, Ren L, Zhao Y, Bai S, Yuan X (2017) Amphiphilic antifogging/anti-icing coatings containing POSS-PDMAEMA-b-PSBMA. ACS Appl Mater Interfaces 9:22959–22969

    CAS  Google Scholar 

  38. He HB, Li B, Dong JP, Lei YY, Wang TL, Yu QW, Sun YB (2013) Mesostructured nanomagnetic polyhedral oligomeric silsesquioxanes (POSS) incorporated with dithiol organic anchors for multiple pollutants capturing in wastewater. ACS Appl Mater Interfaces 5:8058–8066

    CAS  Google Scholar 

  39. Lv K, Zhang W, Zhang L, Wang ZS (2016) POSS-based electrolyte for efficient solid-state dye-sensitized solar cells at sub-zero temperatures. ACS Appl Mater Interfaces 8:5343–5350

    CAS  Google Scholar 

  40. Leng Y, Liu J, Jiang P, Wang J (2014) POSS-derived mesostructured amphiphilic polyoxometalate-based ionic hybrids as highly efficient epoxidation catalysts. ACS Sustain Chem Eng 3:170–176

    Google Scholar 

  41. Chen D, Sun W, Qian C, Reyes LM, Wong AP, Dong Y, Ozin GA (2016) Porous NIR photoluminescent silicon nanocrystals-POSS composites. Adv Funct Mater 26:5102–5110

    CAS  Google Scholar 

  42. Wang X, Zhang W, Qin Z, Yang R (2019) Optically transparent and flame-retarded polycarbonate nanocomposite based on diphenylphosphine oxide-containing polyhedral oligomeric silsesquioxanes. Compos Part A-Appl Sci Manuf 117:92–102

    CAS  Google Scholar 

  43. Fernández MD, Fernández MJ, Cobos M (2015) Effect of polyhedral oligomeric silsesquioxane (POSS) derivative on the morphology, thermal, mechanical and surface properties of poly(lactic acid)-based nanocomposites. J Mater Sci 51:3628–3642. https://doi.org/10.1007/s10853-015-9686-5.

    Article  CAS  Google Scholar 

  44. Liu Z, Hu D, Huang L, Li W, Tian J, Lu L, Zhou C (2018) Simultaneous improvement in toughness, strength and biocompatibility of poly (lactic acid) with polyhedral oligomeric silsesquioxane. Chem Eng J 346:649–661

    CAS  Google Scholar 

  45. Dong F, Zhao P, Dou R, Feng S (2018) Amine-functionalized POSS as cross-linkers of polysiloxane containing γ-chloropropyl groups for preparing heat-curable silicone rubber. Mater Chem Phys 208:19–27

    CAS  Google Scholar 

  46. Zhang W, Li X, Guo X, Yang R (2010) Mechanical and thermal properties and flame retardancy of phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS)/polycarbonate composites. Polym Degrad Stabil 95:2541–2546

    CAS  Google Scholar 

  47. Roy S, Lee BJ, Kakish ZM, Jana SC (2012) Exploiting POSS-sorbitol interactions: issues of reinforcement of isotactic polypropylene spun fibers. Macromolecules 45:2420–2433

    CAS  Google Scholar 

  48. Sheng H, Wang X, Pan Z, Chen X (2017) Thermodynamics and kinetics of one-step curing process for vinyl ester-unsaturated polyester resin in low shrinkage. J Therm Anal Calorim 130:823–833

    CAS  Google Scholar 

  49. Sun H, Ren P, Fried JR (1998) The COMPASS force field: parameterization and validation for phosphazenes. Comput Theor Polym Sci 8:229–246

    CAS  Google Scholar 

  50. Jang C, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU Jr (2013) Interfacial shear strength of cured vinyl ester resin-graphite nanoplatelet from molecular dynamics simulations. Polymer 54:3282–3289

    CAS  Google Scholar 

  51. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    CAS  Google Scholar 

  52. Ding HQ, Karasawa N, Goddard WA III (1992) Atomic level simulations on a million particles: the cell multipole method for Coulomb and London nonbond interactions. J Chem Phys 97:4309–4315

    CAS  Google Scholar 

  53. Lan Y, Li D, Yang R, Liang W, Zhou L, Chen Z (2013) Computer simulation study on the compatibility of cyclotriphosphazene containing aminopropylsilicone functional group in flame retarded polypropylene/ammonium polyphosphate composites. Compos Sci Technol 88:9–15

    CAS  Google Scholar 

  54. Zeng T, Li D, Lan Y, Gao W, Li J, Yang R (2019) Study on Interaction between propargyl-terminated polybutadiene and plasticizers based on simulation and experiments. J Phys Chem A 123:6370–6377

    CAS  Google Scholar 

  55. Spyriouni T, Vergelati C (2001) A molecular modeling study of binary blend compatibility of polyamide 6 and poly (vinyl acetate) with different degrees of hydrolysis: an atomistic and mesoscopic approach. Macromolecules 34:5306–5316

    CAS  Google Scholar 

  56. Zhang ZX, Hao J, Xie P, Zhang X, Han CC, Zhang R (2008) A well-defined ladder polyphenylsilsesquioxane (Ph-LPSQ) synthesized via a new three-step approach: monomer self-organization-lyophilization-surface-confined polycondensation. Chem Mat 20:1322–1330

    CAS  Google Scholar 

  57. Zhang W, Wang X, Wu Y, Qi Z, Yang R (2018) Preparation and characterization of organic-inorganic hybrid macrocyclic compounds: cyclic ladder-like polyphenylsilsesquioxanes. Inorg Chem 57:3883–3892

    CAS  Google Scholar 

  58. Zhang W, Zhang X, Zeng G, Wang K, Zhang W, Yang R (2019) Yang, Flame retardant and mechanism of vinyl ester resin modified by octaphenyl polyhedral oligomeric silsesquioxane. Polym Adv Technol 30:3061–3072

    CAS  Google Scholar 

  59. Liu L, Xu Y, Xu M, He Y, Li S, Li B (2020) An efficient synergistic system for simultaneously enhancing the fire retardancy, moisture resistance and electrical insulation performance of unsaturated polyester resins. Mater Des 187:108302. https://doi.org/10.1016/j.matdes.2019.108302

    Article  CAS  Google Scholar 

  60. Augustine BH, Hughes WC, Zimmermann KJ, Figueiredo AJ, Guo X, Chusuei CC, Maidment JS (2007) Plasma surface modification and characterization of POSS-based nanocomposite polymeric thin films. Langmuir 23:4346–4350

    CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the National Natural Science Foundation of China (21975022) the National Program on Key Research Project (2016YFB0302101), and the International Science and Technology Cooperation Program of China (S2014ZR0465).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenchao Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Jaime Grunlan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Qin, Z., Lan, Y. et al. Flame retardant composites of ladder phenyl/vinyl polysilsesquioxane-reinforced vinyl ester. J Mater Sci 56, 457–473 (2021). https://doi.org/10.1007/s10853-020-05281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05281-3

Navigation