Skip to main content

Advertisement

Log in

Polycarbonate composites with high light transmittance, haze, and flame retardancy based on a series of incomplete-cage oligomeric silsesquioxanes

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of incomplete-cage polyhedral oligomeric silsesquioxanes (DVPOSSs) bearing vinyl groups (–CH=CH2) and phosphorus-containing groups (DOPO) have been synthesized through a hydrolytic condensation reaction. FTIR, NMR, and MALDI–TOF MS have been used to identify the structures of the DVPOSSs, which include T9, T10, and T11 cage structures. Polycarbonate (PC)/DVPOSSs composites can be achieved through simple twin-screw extrusion. The addition of DVPOSSs improves the haze of PC/DVPOSSs composites, while maintaining the high transmittance of PC control. The thermal properties and fire behavior of the PC/DVPOSSs composites have been investigated by TGA, DSC, cone calorimetry, and LOI and UL-94 tests. PC/DVPOSSs-2 and PC/DVPOSSs-4 attained a V-0 rating in 3.2-mm and 1.6-mm samples. The pyrolysis and flame-retardant mechanisms of the PC/DVPOSSs composites have been assessed on the basis of TGA–FTIR, cone calorimetry, and char layer morphology results. The main flame-retardant mechanism is that DVPOSSs induce early decomposition of the PC matrix and increase char formation, rapidly extinguishing the flame and causing an obvious reduction in heat release rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Alongi J, Han Z, Bourbigot S (2015) Intumescence: tradition versus novelty. A comprehensive review. Prog Polym Sci 51:28–73

    Article  CAS  Google Scholar 

  2. Zhang W, Camino G, Yang R (2017) Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: an overview of fire retardance. Prog Polym Sci 67:77–125

    Article  Google Scholar 

  3. Phuong VT, Gigante V, Aliotta L, Coltelli MB, Cinelli P, Lazzeri A (2017) Reactively extruded ecocomposites based on poly(lactic acid)/bisphenol A polycarbonate blends reinforced with regenerated cellulose microfibers. Compos Sci Technol 139:127–137

    Article  CAS  Google Scholar 

  4. Gago-Calderon A, Manuel Jesús H-O, Andres Diaz J, Redrado-Salvatierra G (2018) Evaluation of uniformity and glare improvement with low energy efficiency losses in street lighting LED luminaires using laser-sintered polyamide-based diffuse covers. Energies 11:816

    Article  Google Scholar 

  5. Kusrini E, Saleh MI, Adnan R et al (2012) Structural, optical and electrical properties of europium picrate tetraethylene glycol complex as emissive material for OLED. J Lumin 132:91–99

    Article  CAS  Google Scholar 

  6. Yang Y, Li Y-Q, Shi H-Q, Li W-N, Xiao H-M, Zhu L-P et al (2011) Fabrication and characterization of transparent ZnO–SiO2/silicone nanocomposites with tunable emission colors. Compos B 42:2105–2110

    Article  Google Scholar 

  7. Kusrini E, Saleh MI, Yulizar Y et al (2011) Samarium(III) picrate tetraethylene glycol complex: photoluminescence study and active material in monolayer electroluminescent. J Lumin 131:1959–1965

    Article  CAS  Google Scholar 

  8. Cho H, Kim YH, Wolf C, Lee HD, Lee TW (2018) Improving the stability of metal halide perovskite materials and light-emitting diodes. Adv Mater 30:1704587

    Article  Google Scholar 

  9. Ouyang X, Li PB, Chen DZ et al (2016) Light-diffusing materials for LED illumination applications: comparing the effectiveness of two typical light-diffusing agents. J Appl Polym Sci 133:42923

    Article  Google Scholar 

  10. Djokic L, Cabarkapa A, Djuretic A (2018) Drivers’ impressions under high-pressure sodium and LED street lighting. Light Res Technol 50:1212–1224

    Article  Google Scholar 

  11. Zhang X, Teng Z, Li C, Wang H, Xiao C, Lu S (2017) Experimental study of commercial flame-retardant polycarbonate under external heat flux. J Therm Anal Calorim 131:1–8

    Google Scholar 

  12. Zhu M, Li T, Davis CS, Yao Y, Dai J, Wang Y et al (2016) Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 26:332–339

    Article  CAS  Google Scholar 

  13. Statler D, Stajduhar E, Gupta RK (2008) Flame retardancy of polycarbonate upon repeated recycling. J Fire Sci 26:331–350

    Article  CAS  Google Scholar 

  14. Wawrzyn E, Schartel B, Karrasch A, Jäger C (2014) Flame-retarded bisphenol A polycarbonate/silicon rubber/bisphenol A bis(diphenyl phosphate): adding inorganic additives. Polym Degrad Stabil 106:74–87

    Article  CAS  Google Scholar 

  15. Yang Y, Liu J, Cai X (2016) Antagonistic flame retardancy between hexakis(4-nitrophenoxy) cyclotriphosphazene and potassium diphenylsulfone sulfonate in the PC system. J Therm Anal Calorim 126:571–583

    Article  CAS  Google Scholar 

  16. Sai T, Ran S, Guo Z, Fang Z (2019) A Zr-based metal organic frameworks towards improving fire safety and thermal stability of polycarbonate. Compos B 176:107198

    Article  CAS  Google Scholar 

  17. Yang S, Lv G, Liu Y, Wang Q (2013) Synergism of polysiloxane and zinc borate flame retardant polycarbonate. Polym Degrad Stabil 98:2795–2800

    Article  CAS  Google Scholar 

  18. Wawrzyn E, Schartel B, Seefeldt H, Karrasch A, Jäger C (2012) What reacts with what in bisphenol A polycarbonate/silicon rubber/bisphenol A bis(diphenyl phosphate) during pyrolysis and fire behavior? Ind Eng Chem Res 51:1244–1255

    Article  CAS  Google Scholar 

  19. Levchik SV, Weil ED (2005) Overview of recent developments in the flame retardancy of polycarbonates. Polym Int 54:981–998

    Article  CAS  Google Scholar 

  20. Suin S, Maiti S, Shrivastava NK, Khatua BB (2014) Mechanically improved and optically transparent polycarbonate/clay nanocomposites using phosphonium modified organoclay. Mater Des 54:553–563

    Article  CAS  Google Scholar 

  21. Suin S, Shrivastava NK, Maiti S, Khatua BB (2014) Facile preparation of highly exfoliated and optically transparent polycarbonate (PC)/clay mineral nanocomposites using phosphonium modified organoclay mineral. Appl Clay Sci 95:182–190

    Article  CAS  Google Scholar 

  22. Masatoshi I, Shin S (1998) Silicone derivatives as new flame retardants for aromatic thermoplastics used in electronic devices. Polym Adv Technol 9:593–600

    Article  Google Scholar 

  23. Levchik SV, Weil ED (2006) A review of recent progress in phosphorus-based flame retardants. J Fire Sci 24:345–364

    Article  CAS  Google Scholar 

  24. Li D, Lai WY, Zhang YZ, Huang W (2018) Printable transparent conductive films for flexible electronics. Adv Mater 30:1704738

    Article  Google Scholar 

  25. Yang T, Xiao P, Zhang J, Jia R, Nawaz H, Chen Z et al (2019) Multifunctional cellulose ester containing hindered phenol groups with free-radical-scavenging and UV-resistant activities. ACS Appl Mater Int 11:4302–4310

    Article  CAS  Google Scholar 

  26. Tzu-Chien H, Jian-Ren C, Po-Hsun H, Kuo-Huang H, Sen-Yeu Y (2008) Fast fabrication of integrated surface-relief and particle-diffusing plastic diffuser by use of a hybrid extrusion roller embossing process. Opt Express 16:440–447

    Article  Google Scholar 

  27. Lu G, Driel WDV, Fan X, Mehr MY, Fan J, Cheng Q et al (2016) Colour shift and mechanism investigation on the PMMA diffuser used in LED-based luminaires. Opt Mater 54:282–287

    Article  CAS  Google Scholar 

  28. Takei S, Mochiduki K, Kubo N, Yokoyama Y (2012) Nanoparticle free polymer blends for light scattering films in liquid crystal displays. Appl Phys Lett 100:263108

    Article  Google Scholar 

  29. Kusrini E, Supramono D, Muhammad IA et al (2019) Effect of polypropylene plastic waste as co-feeding for production of pyrolysis oil from palm empty fruit bunches. Evergreen 6:92–97

    Article  CAS  Google Scholar 

  30. Kusrini E, Supramono D, Degirmenci V et al (2018) Improving the quality of pyrolysis oil from Co-firing highdensity polyethylene plastic waste and palm empty fruit bunches. Int J Technol 9:1498–1508

    Article  Google Scholar 

  31. Mumin MA, Xu WZ, Charpentier PA (2015) Quantum dots/silica/polymer nanocomposite films with high visible light transmission and UV shielding properties. Nanotechnology 26:315702

    Article  Google Scholar 

  32. Bagotia N, Choudhary V, Sharma DK (2019) Synergistic effect of graphene/multiwalled carbon nanotube hybrid fillers on mechanical, electrical and EMI shielding properties of polycarbonate/ethylene methyl acrylate nanocomposites. Compos B 159:378–388

    Article  CAS  Google Scholar 

  33. Wang D, Wen X, Chen X, Li Y, Mijowska E, Tang T (2018) A novel stiffener skeleton strategy in catalytic carbonization system with enhanced carbon layer structure and improved fire retardancy. Compos Sci Technol 164:82–91

    Article  CAS  Google Scholar 

  34. Pavličević J, Špírková M, Bera O, Jovičić M, Pilić B, Baloš S et al (2014) The influence of ZnO nanoparticles on thermal and mechanical behavior of polycarbonate-based polyurethane composites. Compos B 60:673–679

    Article  Google Scholar 

  35. Motaung TE, Saladini M, Luyt AS, Martino DFC (2012) The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of polycarbonate. Compos Sci Technol 73:34–39

    Article  CAS  Google Scholar 

  36. Jin X, Wang J, Dai L, Wang W, Wu H (2019) Largely enhanced thermal conductive, dielectric, mechanical and anti-dripping performance in polycarbonate/boron nitride composites with graphene nanoplatelet and carbon nanotube. Compos Sci Technol 184:107862

    Article  CAS  Google Scholar 

  37. Li Z, Yang R (2015) Flame retardancy, thermal and mechanical properties of sulfonate-containing polyhedral oligomeric silsesquioxane (S-POSS)/polycarbonate composites. Polym Degrad Stabil 116:81–87

    Article  CAS  Google Scholar 

  38. Chao C, Gao M (2017) Flame retardancy and thermal properties of octavinylsilsesquioxane/polycarbonate composites. J Therm Anal Calorim 128:1125–1132

    Article  CAS  Google Scholar 

  39. Zhang W, Yang R (2011) Synthesis of phosphorus-containing polyhedral oligomeric silsesquioxanes via hydrolytic condensation of a modified silane. J Appl Polym Sci 122:3383–3389

    Article  CAS  Google Scholar 

  40. Kusrini E, Alhamid MI, Widiantoro AB et al (2020) Simultaneous adsorption of multi-lanthanides from aqueous silica sand solution using pectin-activated carbon composite. Arab J Sci Eng. https://doi.org/10.1007/s13369-020-04386-w

    Article  Google Scholar 

  41. Zhu DY, Guo JW, Xian JX, Fu SQ (2017) Novel sulfonate-containing halogen-free flame-retardants: effect of ternary and quaternary sulfonates centered on adamantane on the properties of polycarbonate composites. RSC Adv 7:39270–39278

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the National Natural Science Foundation of China (51603011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenchao Zhang.

Ethics declarations

Conflict of interest

To the best of our knowledge, the named authors have no conflict of interest, financial, or otherwise.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4691 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wang, X., Qin, Z. et al. Polycarbonate composites with high light transmittance, haze, and flame retardancy based on a series of incomplete-cage oligomeric silsesquioxanes. J Mater Sci 56, 428–441 (2021). https://doi.org/10.1007/s10853-020-05235-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05235-9