Skip to main content
Log in

Acetic acid and propionic acid decarboxylation on Mg(OH)2 nanoclusters: a density functional theory study

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Theoretical analysis of the energetics and mechanism of a reaction can guide the selection of a catalyst from a set of similar candidates and avoid the need for lengthy experimental trials. In this work, a catalyst for the decarboxylation of acetic acid (AA) to methane and carbon dioxide was selected from a set of related magnesium hydroxide [Mg(OH)2]n (n = 1–9) nanoclusters. Density functional theory (DFT) was used to follow the energetics, mechanism, and stereochemical details of the reaction. It was found that the n = 5 nanocluster had the best performance of the set. For this nanocluster, the decarboxylation reaction proceeded through a single transition state (TS), in contrast to an intermediate and two TSs for the free gas-phase catalytic reaction or decarboxylation with a (MgO)4 catalyst. Inspection of AA adsorbed on the [Mg(OH)2]5 cluster shows the favorable structural orientation of the acid, which facilitated decarboxylation via a single activated state, bypassing the intermediate and one of the TSs. We hypothesized that the decarboxylation of propionic acid to ethane and carbon dioxide should also occur via a single TS with the same catalyst, which was confirmed by a separate DFT study. The [Mg(OH)2]5 clusters have potential use as a coating for textiles to catalyze the decomposition of propionic acid in sweat.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513

    CAS  Google Scholar 

  2. Saidi M, Samimi F, Karimipourfard D, Nimmanwudipong T, Gates BC, Rahimpour MR (2014) Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy Environ Sci 7:103–129

    CAS  Google Scholar 

  3. Shibata T, Nishiyama H (2014) Acetic acid decomposition in a coaxial dielectric barrier discharge tube with mist flow. Plasma Chem Plasma Process 34:1331–1343

    CAS  Google Scholar 

  4. Blake PG, Jackson GE (1968) The thermal decomposition of acetic acid. J Chem Soc B. https://doi.org/10.1039/J29680001153

  5. Blake PG, Jackson GE (1969) High- and low-temperature mechanisms in the thermal decomposition of acetic acid. J Chem Soc B. https://doi.org/10.1039/J29690000094

  6. Bamford CH, Dewar MJS (1949) The thermal decomposition of acetic acid. J Chem Soc. https://doi.org/10.1039/JR9490002877

  7. Ruelle P (1986) Ab initio quantum-chemical study of the unimolecular pyrolysis mechanisms of acetic acid. Chem Phys 110:263–274

    CAS  Google Scholar 

  8. Nguyen MT, Ruelle P (1987) Comment on ab initio quantum-chemical study of the unimolecular pyrolysis mechanisms of acetic acid. Chem Phys Lett 138:486–488

    CAS  Google Scholar 

  9. Nguyen MT, Sengupta D, Raspoet G, Vanquickenborne LG (1995) Theoretical study of the thermal decomposition of acetic acid: decarboxylation versus dehydration. J Phys Chem 99:11883–11888

    CAS  Google Scholar 

  10. Li XB, Wang SR, Zhu YY, Yang GH, Zheng PJ (2015) DFT study of bio-oil decomposition mechanism on a Co stepped surface: acetic acid as a model compound. Int J Hydrogen Energy 40:330–339

    Google Scholar 

  11. Neitzel A, Lykhach Y, Johanek V, Tsud N, Skala T, Prince KC, Matolin V, Libuda J (2014) Role of oxygen in acetic acid decomposition on Pt(111). J Phys Chem C 118:14316–14325

    CAS  Google Scholar 

  12. Grinter DC, Nicotra M, Thornton G (2012) Acetic acid adsorption on anatase TiO2(101). J Phys Chem C 116:11643–11651

    CAS  Google Scholar 

  13. Hamid S, Dillert R, Bahnemann DW (2018) Photocatalytic reforming of aqueous acetic acid into molecular hydrogen and hydrocarbons over co-catalyst-loaded TiO2: shifting the product distribution. J Phys Chem C 122:12792–12809

    CAS  Google Scholar 

  14. Liao LF, Lien CF, Lin JL (2001) FTIR study of adsorption and photoreactions of acetic acid on TiO2. Phys Chem Chem Phys 3:3831–3837

    CAS  Google Scholar 

  15. Martin C, Martin I, Rives V (1992) An FT-IR study of the adsorption of pyridine, formic acid and acetic acid on magnesia and molybdena-magnesia. J Mol Catal 73:51–63

    CAS  Google Scholar 

  16. Verma AM, Kishore N (2018) Decomposition of acetic acid over Ru and Ru/MgO catalyst clusters under DFT framework. Chem Phys Lett 711:156–165

    CAS  Google Scholar 

  17. Verma AM, Kishore N (2018) Kinetics of decomposition reactions of acetic acid using DFT approach. Open Chem Eng J 12:14–23

    CAS  Google Scholar 

  18. Perera DC, Hewage JW, De Silva N (2015) Theoretical study of catalytic decomposition of acetic acid on MgO nanosurface. Comput Theor Chem 1064:1–6

    CAS  Google Scholar 

  19. Xiaohong P, Wang Y, Chen Z, Pan D, Cheng Y, Liu Z, Lin Z, Guan X (2013) Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2. ACS Appl Mater Interfaces 5(3):1137–1142

    Google Scholar 

  20. Halbus AF, Horozov TS, Paunov VN (2019) Controlling the antimicrobial action of surface modified magnesium hydroxide nanoparticles. Biomimetics 4(2):41

    CAS  Google Scholar 

  21. Wang YR, Liu FJ (2013) Progress on the preparation and application of Mg (OH)2 as new flame retardants. Appl Mech Mater 320:259–264

    Google Scholar 

  22. Weizhen L, Huang F, Wang YJ, Zou T, Zheng J, Lin Z (2011) Recycling Mg(OH)2 nanoadsorbent during treating the low concentration of CrVI. Environ Sci Technol 45(5):1955–1961

    Google Scholar 

  23. Ding Y, Zhang G, Wu H, Hai B, Wang L, Qian Y (2001) Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape and structure via hydrothermal synthesis. Chem Mater 13:435–440

    CAS  Google Scholar 

  24. Chen Y, Zhou T, Fang H, Li S, Yao Y, He Y (2015) A novel preparation of nano-sized hexagonal Mg(OH)2. Proc Eng 102:388–394

    CAS  Google Scholar 

  25. Wu J, Yan H, Zhang X, Wei L, Liu X, Xu B (2008) Magnesium hydroxide nanoparticles synthesized in water-in-oil microemulsions. J Colloid Interface Sci 324:167–171

    CAS  Google Scholar 

  26. Sun Q, Chen B, Wu X, Wang M, Zhang C, Zeng X, Wang J, Chen J (2015) Preparation of transparent suspension of lamellar magnesium hydroxide nanocrystals using a high-gravity reactive precipitation combined with surface modification. Ind Eng Chem Res 54:666–671

    CAS  Google Scholar 

  27. Wang SY, Li GM, Xu W, Liu C, Dai L, Zhu HC (2016) Facile preparation and application of magnesium hydroxide assembly spheres. Res Chem Intermed 42:2661–2668

    CAS  Google Scholar 

  28. Chen H, Xu C, Liu Y, Zhao G (2012) Formation of flower-like magnesium hydroxide microstructure via a solvothermal process. Electron Mater Lett 8:529–533

    CAS  Google Scholar 

  29. An D, Ding X, Wang Z, Liu Y (2010) Synthesis of ordered arrays of magnesium hydroxide nanoparticles via a simple method. Colloids Surf A 356:28–31

    CAS  Google Scholar 

  30. Al-Hazmi F, Umar A, Dar GN, Al-Ghamdi AA, Al-Sayari SA, Al-Hajry A, Kim SH, Tuwirqi RM, Alnowaiserb F, El-Tantawy F (2012) Microwave assisted rapid growth of Mg(OH)2 nanosheet networks for ethanol chemical sensor application. J Alloys Compd 519:4–8

    CAS  Google Scholar 

  31. Chen M, Dixon DA (2017) Structure and stability of hydrolysis reaction products of MgO nanoparticles leading to the formation of brucite. J Phys Chem C 121:21750–21762

    CAS  Google Scholar 

  32. Zheng J, Zhou W (2013) Low temperature synthesis of nanoscale magnesium hydroxide under normal pressure. Adv Mater Res 779–780:247–250

    Google Scholar 

  33. Koper O, Klabunde KJ, Martin LS, Knappenberger KB, Hladky LL, Decker SP (2003) Reactive nanoparticles as destructive adsorbents for biological and chemical contamination. United States US6653519B2

  34. Vaiss VS, Borges I Jr, Leitao AA (2011) Sarin degradation using brucite. J Phys Chem C 115:24937–24944

    CAS  Google Scholar 

  35. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Google Scholar 

  36. Fukui K (1981) The path of chemical reactions—the IRC approach. Acc Chem Res 14:363–368

    CAS  Google Scholar 

  37. Maeda S, Harabuchi Y, Ono Y, Taketsugu T, Morokuma K (2015) Intrinsic reaction coordinate: calculation, bifurcation and automated search. Int J Quantum Chem 115:258–269

    CAS  Google Scholar 

  38. Peng C, Schlegel HB (1993) Combining synchronous transit and quasi-Newton methods for finding transition states. Israel J Chem 33:449–454

    CAS  Google Scholar 

  39. Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373

    CAS  Google Scholar 

  40. Zhao Z, Rogers DM, Beck TL (2010) Polarization and charge transfer in the hydration of chloride ions. J Chem Phys 132:014502

    Google Scholar 

  41. Bader RWF (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HH, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Milliam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Salvador CP, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian Inc, Wallingford CT

    Google Scholar 

  43. Mackie JC, Doolan KR (1984) High-temperature kinetics of thermal decomposition of acetic acid and its products. Int J Chem Kinet 16:525–541

    CAS  Google Scholar 

  44. Michalkova A, Ilchenko M, Gorb L, Lesczynski J (2004) Theoretical study of the adsorption and decomposition of sarin on magnesium oxide. J Phys Chem B 108:5294–5303

    CAS  Google Scholar 

  45. Oliva JM, Allan NL, Schleyer PVR, Vinas C, Teixidor F (2005) Strikingly long C–C distances in 1,2-disubstituted ortho-carboranes and their dianions. J Am Chem Soc 127:13538–13547

    CAS  Google Scholar 

  46. Grabowski SJ (2001) An estimation of strength of intramolecular hydrogen bonds-ab initio and AIM studies. J Mol Struct 562:137–143

    CAS  Google Scholar 

  47. Mahadevi AS, Neela YI, Sastry GN (2012) Hydrogen bonded networks in formamide [HCONH2]n (n = 1–10) clusters: a computational exploration of preferred aggregation patterns. J Chem Sci 124:35–42

    CAS  Google Scholar 

  48. Cheeseman JR, Carroll MT, Bader RFW (1988) The mechanics of hydrogen bond formation in conjugated systems. Chem Phys Lett 143:450–458

    CAS  Google Scholar 

  49. Carroll MT, Chang C, Bader RFW (1988) Predictions of the structures of hydrogen-bonded complexes using the Laplacian of the charge density. Mol Phys 63:387–405

    CAS  Google Scholar 

  50. Srivastava AK, Misra N (2014) Calculating interaction energies of hydrogen bonded dimers and complexes of HF, H2O and NH3: super-molecular versus AIM approach. J Comput Methods Mol Des 4:19–23

    Google Scholar 

  51. Hobza P, Sponer J, Cubero E, Orozco M, Luque FJ (2000) C–H–O contacts in the adenine—uracil Watson—Crick and uracil—uracil nucleic acid base pairs: nonempirical ab initio study with inclusion of electron correlation effects. J Phys Chem B 104:6286–6292

    CAS  Google Scholar 

  52. Shishkin OV, Gorb L, Leszczynski J (2000) Modelling of the hydration shell of uracil and thymine. Int J Mol Sci 1:17–27

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Stephen Cousins, Bruce Segee, and staff of the University of Maine High Performance Computing Group for their technical assistance and a significant allotment of computer time. The authors thank Dr. S. Vaitheeswaran and Dr. François G. Amar for a careful and critical reading of the manuscript and for helpful comments and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayendran C. Rasaiah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4907 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perera, D.C., Hewage, J.W. & Rasaiah, J.C. Acetic acid and propionic acid decarboxylation on Mg(OH)2 nanoclusters: a density functional theory study. J Mater Sci 55, 16914–16927 (2020). https://doi.org/10.1007/s10853-020-05196-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05196-z

Navigation