Skip to main content
Log in

TMeQ[6]-based supramolecular frameworks assembled through outer surface interactions and their potential applications

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cucurbit[n]uril(Q[n])-based supramolecular frameworks assembled through outer surface interactions are characterized by their simple composition, convenient preparation, high yields and controllable structures. The most prominent characteristic of these frameworks is their diversity, with various synthesis methods, structural characteristics, structure directing agents and basic building blocks of Q[n]s. In this work, a symmetric tetramethyl-substituted Q[6] (TMeQ[6]) is selected as the basic building block, with three different TMeQ[6]-based supramolecular frameworks obtained from 1-, 3- and 5 mol/L aqueous H2SO4 solutions, respectively. The outer surface interactions between TMeQ[6] and the adjacent SO42− anions or TMeQ[6] units are the main driving forces for the formation of these frameworks, which exhibit adsorption properties for fluorophore dyes and organic isomers. These adsorption characteristics may lead to the application of these frameworks in the synthesis of solid fluorescent sensors for volatile organic compounds and the adsorptive separation of alkane isomers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Yaghi OM, Li GM, Li HL (1995) Selective binding and removal of guests in a microporous metal-organic framework. Nature 378:703–706

    Article  CAS  Google Scholar 

  2. HelalA Yamani ZH, Cordova KE, Yaghi OM (2017) Multivariate metal-organic frameworks. Natl Sci Rev 4:296–298

    Article  CAS  Google Scholar 

  3. Wang H, Zeng Z, Xu P, Li L, Zeng G, Xiao R, Tang Z, Huang D, Tang L, Lai C, Jiang D, Liu Y, Yi H, Qin L, Ye S, Ren X, Tang W (2019) Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem Soc Rev 48:488–516

    Article  CAS  Google Scholar 

  4. Jiao JJ, Gong W, Wu XW, Yang SP, Cui Y (2019) Multivariate crystalline porous materials: synthesis, property and potential application. Coord Chem Rev 385:174–190

    Article  CAS  Google Scholar 

  5. Lin RB, He YB, Li P, Wang HL, Zhou W, Chen BL (2019) Multifunctional porous hydrogen-bonded organic framework materials. Chem Soc Rev 48:1362–1389

    Article  CAS  Google Scholar 

  6. Yang W, Greenaway A, Lin X, Matsuda R, Blake AJ, Wilson C, Lewis W, Hubberstey P, Kitagawa S, Champness NR, Schröder M (2010) Exceptional thermal stability in a supramolecular organic framework: porosity and gas storage. J Am Chem Soc 132:14457–14469

    Article  CAS  Google Scholar 

  7. Wang H, Li J (2019) Microporous metal–organic frameworks for adsorptive separation of C5–C6 alkane isomers. Acc Chem Res 52:1968–1978

    Article  CAS  Google Scholar 

  8. Zhang JY, Chen JX, Peng S, Peng SY, Zhang ZZ, Tong YX, Miller PW, Yan XP (2019) Emerging porous materials in confined spaces: from chromatographic applications to flow chemistry. Chem Soc Rev 48:2566–2595

    Article  CAS  Google Scholar 

  9. Wen Y, Zhang J, Xu Q, Wu XT, Zhu QL (2018) Pore surface engineering of metal–organic frameworks for heterogeneous catalysis. Coord Chem Rev 376:248–276

    Article  CAS  Google Scholar 

  10. Cai ZX, Wang ZL, Kim J, Yamauchi Y (2019) Hollow functional materials derived from metal–organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications. Adv Mater 31:1804903

    Article  CAS  Google Scholar 

  11. Zhang L, Liu HW, Shi W, Cheng P (2019) Synthesis strategies and potential applications of metal-organic frameworks for electrode materials for rechargeable lithium ion batteries. Coord Chem Rev 388:293–309

    Article  CAS  Google Scholar 

  12. An HD, Li MM, Gao J, Zhang ZJ, Ma SQ, Chen Y (2019) Incorporation of biomolecules in metal-organic frameworks for advanced applications. Coord Chem Rev 384:90–106

    Article  CAS  Google Scholar 

  13. Rojas S, Arenas-Vivo A, Horcajada P (2019) Metal-organic frameworks: a novel platform for combined advanced therapies. Coord Chem Rev 388:202–226

    Article  CAS  Google Scholar 

  14. Begum S, Hassan Z, Brase S, Wöll C, Tsotsalas M (2019) Metal–organic framework-templated biomaterials: recent progress in synthesis, functionalization and applications. Acc Chem Res 52:1598–1610

    Article  CAS  Google Scholar 

  15. Cong H, Ni XL, Xiao X, Huang Y, Zhu QJ, Xue SF, Tao Z, Lindoy LF, Wei G (2016) Synthesis and separation of cucurbit[n]urils and their derivatives. Org Biomol Chem 14:4335–4364

    Article  CAS  Google Scholar 

  16. Freeman WA, Mock WL, Shih NY (1981) Cucurbituril. J Am Chem Soc 103:7367–7368

    Article  CAS  Google Scholar 

  17. Shen Y, Zou L, Wang Q (2017) Template-directed synthesis of cucurbituril analogues using propanediurea as a building block. New J Chem 41:7857–7860

    Article  CAS  Google Scholar 

  18. Wu Y, Xu L, Shen Y, Wang Y, Zou L, Wang Q, Jiang X, Liu J, Tian H (2017) The smallest cucurbituril analogue with high affinity for Ag+. Chem Commun 53:4070–4072

    Article  CAS  Google Scholar 

  19. Li Q, Qiu SC, Zhang J, Chen K, Huang Y, Xiao X, Zhang Y, Li F, Zhang YQ, Xue SF, Zhu QJ, Tao Z, Lindoy LF, Wei G (2016) Twisted cucurbit[n]urils. Org Lett 18:4020–4023

    Article  CAS  Google Scholar 

  20. Ni XL, Xiao X, Cong H, Liang LL, Chen K, Cheng XJ, Ji NN, Zhu QJ, Xue SF, Tao Z (2013) Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. Chem Soc Rev 42:9480–9508

    Article  CAS  Google Scholar 

  21. Ni XL, Xue SF, Tao Z, Zhu QJ, Lindoy LF, Wei G (2015) Advances in the lanthanide metallosupramolecular chemistry of the cucurbit[n]urils. Coord Chem Rev 287:89–113

    Article  CAS  Google Scholar 

  22. Tian J, Chen L, Zhang DW, Liu Y, Li ZT (2016) Supramolecular organic frameworks: engineering periodicity in water through host–guest chemistry. Chem Commun 52:6351–6362

    Article  CAS  Google Scholar 

  23. Tian J, Xu ZY, Zhang DW, Wang H, Xie SH, Xu DW, Ren YH, Wang H, Liu Y, Li ZT (2016) Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production. Nat Commun 7:1–9

    Google Scholar 

  24. Tian J, Wang H, Zhang DW, Liu Y, Li ZT (2017) Supramolecular organic frameworks (SOFs): homogeneous regular 2D and 3D pores in water. Natl Sci Rev 4:426–436

    Article  CAS  Google Scholar 

  25. Ni XL, Xiao X, Cong H, Zhu QJ, Xue SF, Tao Z (2014) Self-assemblies based on the “outer-surface interactions” of cucurbit[n]urils: new opportunities for supramolecular architectures and materials. Acc Chem Res 47:1386–1395

    Article  CAS  Google Scholar 

  26. Huang Y, Gao RH, Liu M, Chen LX, Ni XL, Xiao X, Cong H, Zhu QJ, Chen K, Tao Z (2020) Cucurbit[n]uril-based supramolecular frameworks assembled through outer surface interactions. Angew Chem Int Ed. https://doi.org/10.1002/anie.202002666

    Article  Google Scholar 

  27. Zhao YJ, Xue SF, Zhu QJ, Tao Z, Zhang JX, Wei ZB, Long LS, Hu ML, Xiao HP, Day A (2004) Synthesis of a symmetrical tetrasubstituted cucurbit[6]uril and its host-guest inclusion complex with 2,2′-bipyridine. Chin Sci Bull 49:1111–1116

    Article  CAS  Google Scholar 

  28. Yao YQ, Zhang YJ, Zhang YQ, Tao Z, Ni XL, Wei G (2017) Multiple efficient fluorescence emission from cucurbit[10]uril-[Cd4Cl16]8–-based pillared diamond porous supramolecular frameworks. ACS Appl Mater Interfaces 9:40760–40765

    Article  CAS  Google Scholar 

  29. Liu M, Kan JL, Yao YQ, Zhang YQ, Bian B, Tao Z, Zhu QJ, Xiao X (2019) Facile preparation and application of luminescent cucurbit[10]uril-based porous supramolecular frameworks. Sens Actuator B Chem 283:290–297

    Article  CAS  Google Scholar 

  30. Liu M, Yang MX, Yao YQ, Zhang YJ, Zhang YQ, Tao Z, Zhu QJ, Wei G, Bian B, Xiao XJ (2019) Specific recognition of formaldehyde by a cucurbit[10]uril-based porous supramolecular assembly incorporating adsorbed 1,8-diaminonaphthalene. Mater Chem C 7:1597–1603

    Article  CAS  Google Scholar 

  31. Tian FY, Cheng RX, Zhang YQ, Zhu QJ, Tao Z (2020) Specific recognition of methanol using a symmetric Tetramethylcucurbit[6]uril-based porous supramolecular assembly incorporating adsorbed dyes. Aust J Chem. https://doi.org/10.1071/CH19586

    Article  Google Scholar 

  32. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A 64:112–122

    Article  CAS  Google Scholar 

  33. Sheldrick GM (1997) SHELXL-97 program for the solution and refinement of crystal structures. University of Goettingen, Germany

    Google Scholar 

  34. Zhao WX, Wang CZ, Zhang YQ, Xue SF, Zhu QJ, Tao Z (2015) Supramolecular assembly of a methyl-substituted cucurbit[6]uril and its potential applications in selective sorption. New J Chem 39:2433–2436

    Article  CAS  Google Scholar 

  35. Ji NN, Cheng XJ, Zhao Y, Liang LL, Chen K, Xiao X, Zhang YQ, Zhu QJ, Xue SF, Tao Z (2014) Hexachloroplatinate(IV) anion induced cucurbituril supramolecular assembly with linear channels. Eur J Inorg Chem 9:1435–1438

    Article  CAS  Google Scholar 

  36. Wang CZ, Zhao WX, Shen FF, Zhang YQ, Xiao X, Zhu QJ, Tao Z (2016) Methyl-substituted cucurbit[6]uril-cased microporous supramolecular frameworks for highly selective Et2O/CH3OH adsorption. CrystEngComm 18:2112–2118

    Article  CAS  Google Scholar 

  37. Choudhury SD, Mohanty J, Upadhyaya HP, Bhasikuttan AC, Pal H (2009) Photophysical studies on the noncovalent interaction of thioflavin T with cucurbit[n]uril macrocycles. J Phys Chem B 113:1891–1898

    Article  CAS  Google Scholar 

  38. Mohanty J, Choudhury SD, Upadhyaya HP, Bhasikuttan AC, Pal H (2009) Control of the supramolecular excimer formation of thioflavin T within a cucurbit[8]uril host: a fluorescence on/off mechanism. Chem Eur J 15:5215–5219

    Article  CAS  Google Scholar 

  39. Choudhury SD, Mohanty J, Pal H, Bhasikuttan AC (2010) Cooperative metal ion binding to a cucurbit[7]uril-thioflavin T complex: demonstration of a stimulus-responsive fluorescent supramolecular capsule. J Am Chem Soc 132:1395–1401

    Article  CAS  Google Scholar 

  40. Nau WM (2010) Under control. Nat Chem 2:248–250

Download references

Acknowledgements

We acknowledge the support of National Natural Science Foundation of China (Nos. 51663005, 21761007, 21871064), Science and Technology Plan Project of Guizhou Province (Nos. 20175788 and 20185781) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20160943).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Chen or Zhu Tao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, R.X., Tian, F.Y., Zhang, Y.Q. et al. TMeQ[6]-based supramolecular frameworks assembled through outer surface interactions and their potential applications. J Mater Sci 55, 16497–16509 (2020). https://doi.org/10.1007/s10853-020-05180-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05180-7

Navigation