Temperature dependence of single-walled carbon nanotube migration in epoxy resin under DC electric field

Abstract

Electric fields have been shown to induce orientation of CNTs in a polymer matrix along the direction of the applied field. When using a DC field, the CNTs also migrate between the two electrodes, resulting in a nonuniform CNT concentration across the composite sample and impacting the strengthening effect gained from the CNT alignment. In this study, we applied a DC electric field to a single-walled carbon nanotube (SWCNT)/epoxy solution and investigated the migration kinetics at different temperatures (34.0–56.6 °C) by tracking the real-time changes of SWCNT concentration. The SWCNTs were found to migrate from the negative electrode to the positive electrode at a constant speed. The rate of CNT migration increases with temperature and follows an Arrhenius relationship. The activation energy (83.3–87.7 kJ/mole) was comparable to the activation energy for the viscous flow of the neat epoxy, indicating the viscosity of the polymer melt is the main factor affecting the migration. The migration process and the resulting CNT concentration gradient across the sample are a function of temperature and time enabling control of the spatial distribution of the CNTs and the selective enhancement of electrical, mechanical and thermal properties of CNT/polymer composites.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

References

  1. 1

    Moon MS, Yun Y, Yoo MH, Song JH, Oh JH (2019) Carbon fiber manufacturing and applications as a benchmark for nanotube superfiber development. In: Schulz M (ed) Nanotube Superfiber Materials. Elsevier, Amsterdam, pp 879–896

    Google Scholar 

  2. 2

    Todor MP, Bulei C, Kiss  I (2017) An overview on fiber-reinforced composites used in the automotive industry. Ann Faculty Eng Hunedoara- Int J Eng 15(2):181–184

    CAS  Google Scholar 

  3. 3

    Al-Lami A, Hilmer P, Sinapius M (2018) Eco-efficiency assessment of manufacturing carbon fiber reinforced polymers (cfrp) in aerospace industry. Aerosp Sci Technol 79:669–678

    Google Scholar 

  4. 4

    Jakubinek MB, Ashrafi B, Zhang Y, Martinez-Rubi Y, Kingston CT, Johnston A, Simard B (2015) Single-walled carbon nanotube—epoxy composites for structural and conductive aerospace adhesives. Compos Part B: Eng 69:87–93

    CAS  Google Scholar 

  5. 5

    Barile C, Casavola C (2019) Mechanical characterization of carbon fiber-reinforced plastic specimens for aerospace applications. In: Saba N (ed) Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Elsevier, Amsterdam, pp 387–407

    Google Scholar 

  6. 6

    Ribeiro I, Kaufmann J, Götze U, Peças P, Henriques E (2019) Fibre reinforced polymers in the sports industry–life cycle engineering methodology applied to a snowboard using anisotropic layer design. Int J Sust Eng 12(3):201–211

    Google Scholar 

  7. 7

    Mittal G, Rhee KY, Mišković-Stanković V, Hui D (2018) Reinforcements in multi-scale polymer composites: processing, properties, and applications. Compos Part B: Eng 138:122–139

    CAS  Google Scholar 

  8. 8

    Taub A, De Moor E, Luo A, Matlock DK, Speer JG, Vaidya U (2019) Materials for automotive lightweighting. Annu Rev Mater Res 49:327–359

    CAS  Google Scholar 

  9. 9

    Nguyen-Tran HD, Hoang VT, Do VT, Chun DM, Yum YJ (2018) Effect of multiwalled carbon nanotubes on the mechanical properties of carbon fiber-reinforced polyamide-6/polypropylene composites for lightweight automotive parts. Materials 11(3):429–440

    Google Scholar 

  10. 10

    Pervaiz M, Panthapulakkal S, Birat KC, Sain M, Tjong J (2016) Emerging trends in automotive lightweighting through novel composite materials. Mater Sci Appl 7(01):26–38

    Google Scholar 

  11. 11

    Nickels L (2018) Composites driving the auto industry. Reinf Plast 62(1):38–39

    Google Scholar 

  12. 12

    Zhang Q, Huang J-Q, Qian W-Z, Zhang Y-Y, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9(8):1237–1265

    CAS  Google Scholar 

  13. 13

    Odom TW, Huang JL, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64

    CAS  Google Scholar 

  14. 14

    Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382(6586):54–56

    CAS  Google Scholar 

  15. 15

    Hong S, Myung S (2007) Nanotube electronics: a flexible approach to mobility. Nat Nanotechnol 2(4):207–208

    CAS  Google Scholar 

  16. 16

    Hone J, Whitney M, Piskoti C, Zettl A (1999) Thermal conductivity of single-walled carbon nanotubes. Phys Rev B 59(4):R2514–R2516

    CAS  Google Scholar 

  17. 17

    Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96–100

    CAS  Google Scholar 

  18. 18

    Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36(7):914–944

    CAS  Google Scholar 

  19. 19

    Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640

    CAS  Google Scholar 

  20. 20

    Guo X, Wang JB, Zhang HW (2006) Mechanical properties of single-walled carbon nanotubes based on higher order cauchy–born rule. Int J Solids Struct 43(5):1276–1290

    Google Scholar 

  21. 21

    Dondero WE, Gorga RE (2006) Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding. J Polym Sci Part B: Polym Phys 44(5):864–878

    CAS  Google Scholar 

  22. 22

    Tarfaoui M, Lafdi K, El Moumen A (2016) Mechanical properties of carbon nanotubes based polymer composites. Compos B Eng 103:113–121

    CAS  Google Scholar 

  23. 23

    Chatterjee T, Mitchell CA, Hadjiev VG, Krishnamoorti R (2007) Hierarchical polymer–nanotube composites. Adv Mater 19(22):3850–3853

    CAS  Google Scholar 

  24. 24

    Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8(1):31–37

    CAS  Google Scholar 

  25. 25

    Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362(6414):547–553

    CAS  Google Scholar 

  26. 26

    Tang W, Santare MH, Advani SG (2003) Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (mwnt/hdpe) composite films. Carbon 41(14):2779–2785

    CAS  Google Scholar 

  27. 27

    Wang L, Tan Y, Wang X, Ting Xu, Xiao C, Qi Z (2018) Mechanical and fracture properties of hyperbranched polymer covalent functionalized multiwalled carbon nanotube-reinforced epoxy composites. Chem Phys Lett 706:31–39

    CAS  Google Scholar 

  28. 28

    Chauvet O, Forro L, Bacsa W, Ugarte D, Doudin B, de Heer WA (1995) Magnetic anisotropies of aligned carbon nanotubes. Phys Rev B 52(10):R6963–R6965

    CAS  Google Scholar 

  29. 29

    Prasse T, Cavaille J-Y, Bauhofer W (2003) Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment. Compos Sci Technol 63(13):1835–1841

    CAS  Google Scholar 

  30. 30

    Brandley E, Greenhalgh ES, Shaffer MSP, Li Q (2018) Mapping carbon nanotube orientation by fast fourier transform of scanning electron micrographs. Carbon 137:78–87

    CAS  Google Scholar 

  31. 31

    Cai J, Li X, Ma L, Jiang Y, Zhang D (2019) Facile large-scale alignment and assembly of conductive micro/nano particles by combining both flow shear and electrostatic interaction. Compos Sci Technol 171:199–205

    CAS  Google Scholar 

  32. 32

    Wan-Cheng Yu, Jia-Zhuang Xu, Wang Z-G, Huang Y-F, Yin H-M, Ling Xu, Chen Y-W, Yan D-X, Li Z-M (2018) Constructing highly oriented segregated structure towards high-strength carbon nanotube/ultrahigh-molecular-weight polyethylene composites for electromagnetic interference shielding. Compos A Appl Sci Manuf 110:237–245

    Google Scholar 

  33. 33

    Liu Q, Lomov SV, Gorbatikh L (2019) The interplay between multiple toughening mechanisms in nanocomposites with spatially distributed and oriented carbon nanotubes as revealed by dual-scale simulations. Carbon 142:141–149

    CAS  Google Scholar 

  34. 34

    Lin Qiu Pu, Guo XY, Ouyang Y, Feng Y, Zhang X, Zhao J, Zhang X, Li Q (2019) Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances. Carbon 145:650–657

    Google Scholar 

  35. 35

    Morais MVC, Oliva-Avilés AI, Matos MAS, Tagarielli VL, Pinho ST, Hübner C, Henning F (2019) On the effect of electric field application during the curing process on the electrical conductivity of single-walled carbon nanotubes–epoxy composites. Carbon 150:153–167

    CAS  Google Scholar 

  36. 36

    Khan SU, Pothnis JR, Kim JK (2013) Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Compos Part A: Appl Sci Manuf 49:26–34

    CAS  Google Scholar 

  37. 37

    Ma C, Liu HY, Du X, Mach L, Xu F, Mai YW (2015) Fracture resistance, thermal and electrical properties of epoxy composites containing aligned carbon nanotubes by low magnetic field. Compos Sci Technol 114:126–135

    CAS  Google Scholar 

  38. 38

    Liu M, Younes H, Hong H, Peterson GP (2019) Polymer nanocomposites with improved mechanical and thermal properties by magnetically aligned carbon nanotubes. Polymer 166:81–87

    CAS  Google Scholar 

  39. 39

    Goh GL, Agarwala S, Yeong WY (2019) Directed and on-demand alignment of carbon nanotube: A review toward 3d printing of electronics. Adv Mater Interfaces 6(4):1801318–1801346

    Google Scholar 

  40. 40

    Y He (2019) Carbon Nanotube Alignment: Electromagnetic Field and Shear Force. PhD thesis, 2019

  41. 41

    Miansari M, Qi A, Yeo LY, Friend JR (2015) Vibration-induced deagglomeration and shear-induced alignment of carbon nanotubes in air. Adv Funct Mater 25(7):1014–1023

    CAS  Google Scholar 

  42. 42

    Gupta P, Rajput M, Singla N, Kumar V, Lahiri D (2016) Electric field and current assisted alignment of cnt inside polymer matrix and its effects on electrical and mechanical properties. Polymer 89:119–127

    CAS  Google Scholar 

  43. 43

    Ji Y, Huang YY, Rungsawang R, Terentjev EM (2010) Dispersion and alignment of carbon nanotubes in liquid crystalline polymers and elastomers. Adv Mater 22(31):3436–3440

    CAS  Google Scholar 

  44. 44

    Gao J, He Y, Gong X (2018) Effect of electric field induced alignment and dispersion of functionalized carbon nanotubes on properties of natural rubber. Res Phys 9:493–499

    Google Scholar 

  45. 45

    Monti M, Natali M, Torre L, Kenny JM (2012) The alignment of sin-´ gle walled carbon nanotubes in an epoxy resin by applying a dc electric field. Carbon 50(7):2453–2464

    CAS  Google Scholar 

  46. 46

    Martin CA, Sandler JKW, Windle AH, Schwarz M-K, Bauhofer W, Schulte K, Shaffer MSP (2005) Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46(3):877–886

    CAS  Google Scholar 

  47. 47

    Oliva-Avilés AI, Avilés F, Sosa V, Oliva AI, Gamboa F (2012) Dynamics of carbon nanotube alignment by electric fields. Nanotechnology 23(46):465710–465719

    Google Scholar 

  48. 48

    Chapkin WA, McNerny DQ, Aldridge MF, He Y, Wang W, Kieffer J, Taub AI (2016) Real-time assessment of carbon nanotube alignment in a polymer matrix under an applied electric field via polarized raman spectroscopy. Polym Test 56:29–35

    CAS  Google Scholar 

  49. 49

    W Chapkin (2017) Electrostatically induced carbon nanotube alignment for polymer composite applications

  50. 50

    Zhu Y-F, Ma C, Zhang W, Zhang R-P, Koratkar N, Liang Ji (2009) Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. J Appl Phys 105(5):054319–054324

    Google Scholar 

  51. 51

    Oliva-Avilés AI, Avilés F, Sosa V, Seidel GD (2014) Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields. Carbon 69:342–354

    Google Scholar 

  52. 52

    Martin CA, Sandler JKW, Shaffer MSP, Schwarz M-K, Bauhofer W, Schulte K, Windle AH (2004) Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos Sci Technol 64(15):2309–2316

    CAS  Google Scholar 

  53. 53

    Garcia EJ, Wardle BL, Hart AJ (2008) Joining prepreg composite interfaces with aligned carbon nanotubes. Compos Part A: Appl Sci Manuf 39(6):1065–1070

    Google Scholar 

  54. 54

    Ogasawara T, Moon S-Y, Inoue Y, Shimamura Y (2011) Mechanical properties of aligned multi-walled carbon nanotube/epoxy composites processed using a hot-melt prepreg method. Compos Sci Technol 71(16):1826–1833

    CAS  Google Scholar 

  55. 55

    Natarajan B, Stein IY, Lachman N, Yamamoto N, Jacobs DS, Sharma R, Liddle JA, Wardle BL (2019) Aligned carbon nanotube morphogenesis predicts physical properties of their polymer nanocomposites. Nanoscale 11:16327–16335

    CAS  Google Scholar 

  56. 56

    Laidler KJ (1984) The development of the arrhenius equation. J Chem Educ 61(6):494–498

    CAS  Google Scholar 

  57. 57

    Yamamoto U, Schweizer KS (2014) Microscopic theory of the long-time diffusivity and intermediate-time anomalous transport of a nanoparticle in polymer melts. Macromolecules 48(1):152–163

    Google Scholar 

  58. 58

    Kalathi JT, Yamamoto U, Schweizer KS, Grest GS, Kumar SK (2014) Nanoparticle diffusion in polymer nanocomposites. Phys Rev Lett 112(10):108301–108305

    Google Scholar 

  59. 59

    Yamamoto U, Schweizer KS (2013) Spatially dependent relative diffusion of nanoparticles in polymer melts. J Chem Phys 139(6):064907–064916

    Google Scholar 

  60. 60

    Choi J, Cargnello M, Murray CB, Clarke N, Winey KI, Composto RJ (2015) Fast nanorod diffusion through entangled polymer melts. ACS Macro Lett 4(9):952–956

    CAS  Google Scholar 

  61. 61

    Omari RA, Aneese AM, Grabowski CA, Mukhopadhyay A (2009) Diffusion of nanoparticles in semidilute and entangled polymer solutions. J Phys Chem B 113(25):8449–8452

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from the University of Michigan and the program of China Scholarships Council (NO. 201706290165). We also acknowledge Prof. Larson (University of Michigan) for access to the rheometer. Special thanks go to Dr.Wesley Chapkin graduated from University of Michigan for the useful discussions he provided.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alan I. Taub.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: M. Grant Norton.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Saukas, C., He, Y. et al. Temperature dependence of single-walled carbon nanotube migration in epoxy resin under DC electric field. J Mater Sci 55, 16220–16233 (2020). https://doi.org/10.1007/s10853-020-05150-z

Download citation