Skip to main content

Advertisement

Log in

Bio-based rigid polyurethane foam from castor oil with excellent flame retardancy and high insulation capacity via cooperation with carbon-based materials

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we prepared the biomass castor oil-based rigid polyurethane foams (RPUF). The two bio-based RPUFs contain modified polyols from castor oil, one of which was transamidated castor oil with diethanolamine (BIO1) and another was further modified epoxidized polyols in BIO1 with phenylphosphonic acid. The cellular structure, thermal, flame retardant and mechanical properties of RPUF via incorporation of expandable graphite (EG) and graphene oxide (GO) on a total fixed amount of 6 wt% were studied by scanning electron microscopy (SEM), thermal conductivity, limiting oxygen index (LOI), vertical burning test (UL94) and cone calorimeter test (CCT), etc. The cellular structure indicated that GO facilitates the dispersion of EG and decreases the cell size of the foam. The thermal and fire behaviors indicated that GO increased the insulation capacity and the flame-retardant performance of RPUFs. The optimal sample BIO2/EG/GO obtained V-0 rating, whereas BIO2/EG obtained only V-2 rating on the UL94 test. Moreover, results from CCT showed that the BIO2/EG/GO effectively reduced heat release rate (HRR), total heat release (THR) and total smoke production (TSP) by 54%, 24% and 15%, respectively, in comparison with BIO1 and decreased the HRR and THR 46% and 6%, respectively, compared to BIO2 sample. The compressive performance of BIO2/EG/GO and BIO2/EG increased to 0.11 MPa compared to 0.07 MPa from BIO1. These interesting results proved a new strategy to develop a bio-based flame-retardant RPUF as fire safety thermal insulation materials by incorporating natural-based carbon materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Levchik SV, Weil ED (2004) Polym Int 53:1585–1610

    CAS  Google Scholar 

  2. Wang S, Qian L, Xin F (2016) Polym Compos 39:329–336

    Google Scholar 

  3. Luo W, Qin J, Xiao M, Han D, Wang S, Meng Y (2017) ACS Omega 2:3205–3213

    CAS  Google Scholar 

  4. Gaidukova G, Ivdre A, Fridrihsone A, Verovkins A, Cabulis U, Gaidukovs S (2017) Ind Crops Prod 102:133–143

    CAS  Google Scholar 

  5. Mutlu H, Meier MAR (2010) Eur J Lipid Sci Technol 112:10–30

    CAS  Google Scholar 

  6. Wang C, Zheng Y, Xie Y, Qiao K, Sun Y, Yue L, J Polym Res. https://doi.org/10.1007/s10965-015-0782-7

  7. Ionescu M, Petrović ZS, Wan X (2008) J Am Oil Chem Soc 85:465–473

    CAS  Google Scholar 

  8. Stirna U, Lazdiņa B, Vilsone D, Lopez MJ, Vargas-Garcia MdelC, Suárez-Estrella F, Moreno J (2012) J Cell Plast 48:476–488

    CAS  Google Scholar 

  9. Zhang L, Zhang M, Hu L, Zhou Y (2014) Ind Crops Prod 52:380–388

    CAS  Google Scholar 

  10. Ding H, Huang K, Li S, Xu L, Xia J, Li M (2017) J Anal Appl Pyrolysis 128:102–113

    CAS  Google Scholar 

  11. Rabe S, Chuenban Y, Schartel B (2017) Materials (Basel) 10:455

    Google Scholar 

  12. Rao WH, Zhu ZM, Wang SX, Wang T, Tan Y, Liao W, Zhao HB, Wang YZ (2018) Polym Degrad Stab 153:192–200

    CAS  Google Scholar 

  13. Yuan Y, Ma C, Shi Y, Song L, Hu Y, Hu W (2018) Mater Chem Phys 211:42–53

    CAS  Google Scholar 

  14. Gosz K, Haponiuk J, Piszczyk Ł (2018) J Polym Environ 26:3877–3888

    CAS  Google Scholar 

  15. Camino G, Duquesne S, Delobel R, Eling B, Lindsay C, Roels T, ACS Symp Ser https://doi.org/10.1021/bk-2001-0797.ch008

  16. Thirumal M, Khastgir D, Singha NK, Manjunath BS, Naik YP (2008) J Appl Polym Sci 110:2586–2594

    CAS  Google Scholar 

  17. Wang X, Kalali EN, Wan J-T, Wang D-Y (2017) Prog Polym Sci 69:22–46

    CAS  Google Scholar 

  18. Strankowski M, Korzeniewski P, Strankowska J, Anu AS, Thomas S. Materials (Basel)., https://doi.org/10.3390/ma11010082

  19. Wu N, She X, Yang D, Wu X, Su F, Chen Y (2012) J Mater Chem 22:17254

    CAS  Google Scholar 

  20. Bera M, Chandravati P, Gupta P, Maji PK (2018) J Nanosci Nanotechnol 18:902–912

    CAS  Google Scholar 

  21. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev AS, Alemany LB, Lu W, Tour JM (2018) ACS Nano 12:2078

    CAS  Google Scholar 

  22. Bera M, Maji PK (2017) Polymer (Guildf) 119:118–133

    CAS  Google Scholar 

  23. Lorenzetti A, Roso M, Bruschetta A, Boaretti C, Modesti M (2016) Polym Adv Technol 27:303–307

    CAS  Google Scholar 

  24. Pokharel P, Choi S, Lee DS (2015) Compos Part A Appl Sci Manuf 69:168–177

    CAS  Google Scholar 

  25. Liu H, Dong M, Huang W, Gao J, Dai K, Guo J, Zheng G, Liu C, Shen C, Guo Z (2017) J Mater Chem C 5:73–83

    CAS  Google Scholar 

  26. Zhou S, Hao G, Zhou X, Jiang W, Wang T, Zhang N, Yu L (2016) Chem Eng J 302:155–162

    CAS  Google Scholar 

  27. Kim J-M, Kim J-H, Ahn J-H, Kim J-D, Park S, Park KH, Lee J-M (2018) Compos Part B Eng 136:28–38

    CAS  Google Scholar 

  28. Jiang S, He Z, Li Q, Wang J, Wu G, Zhao Y, Kang M (2019) Polym Compos 40:E953–E961

    CAS  Google Scholar 

  29. Ionescu M (2005) Chemistry and technology of polyols for polyurethanes, Rapra Technology

  30. Yakushin V, Stirna U, Bikovens O, Misane M, Sevastyanova I, VilsoneD. Mater Sci, https://doi.org/10.5755/j01.ms.20.3.4532

  31. Bellamy LJ (1975) The infra-red spectra of complex molecules, 1st edn. Springer, Netherlands

    Google Scholar 

  32. Jia PY, Bo CY, Zhang LQ, Hu LH, Zhang M, Zhou YH (2015) J Ind Eng Chem 28:217–224

    CAS  Google Scholar 

  33. Sinadinović-Fišer S, Janković M, Borota O (2012) Chem Eng Process Process Intensif 62:106–113

    Google Scholar 

  34. Jia P, Hu L, Zhang M, Feng G, Zhou Y (2017) Eur Polym J 87:209–220

    CAS  Google Scholar 

  35. Sun F, Yu T, Hu C, Li Y (2016) Compos Sci Technol 136:76–84

    CAS  Google Scholar 

  36. Yu B, Wang X, Qian X, Xing W, Yang H, Ma L, Lin Y, Jiang S, Song L, Hu Y, Lo S (2014) RSC Adv 4:31782

    CAS  Google Scholar 

  37. Yuan R, Yuan J, Wu Y, Chen L, Zhou H, Chen J (2017) Appl Surf Sci 416:868–877

    CAS  Google Scholar 

  38. Saha MC, Kabir ME, Jeelani S (2008) Mater Sci Eng, A 479:213–222

    Google Scholar 

  39. Guo Y, Bao C, Song L, Yuan B, Hu Y (2011) Ind Eng Chem Res 50:7772–7783

    CAS  Google Scholar 

  40. Ying Z, Lin X, Qi Y, Luo J (2008) Mater Res Bull 43:2677–2686

    CAS  Google Scholar 

  41. Cai D, Jin J, Yusoh K, Rafiq R, Song M (2012) Compos Sci Technol 72:702–707

    CAS  Google Scholar 

  42. Pokharel P, Lee DS (2014) Chem Eng J 253:356–365

    CAS  Google Scholar 

  43. Ji D, Fang Z, He W, Luo Z, Jiang X, Wang T, Guo K (2015) Ind Crops Prod 74:76–82

    CAS  Google Scholar 

  44. Hu XM, Wang DM (2013) J Appl Polym Sci 129:238–246

    CAS  Google Scholar 

  45. Zhang L, Zhang M, Zhou Y, Hu L (2013) Polym Degrad Stab 98:2784–2794

    CAS  Google Scholar 

  46. Li Y, Zou J, Zhou S, Chen Y, Zou H, Liang M, Luo W (2014) J Appl Polym Sci 131:1–9

    Google Scholar 

  47. Pokharel P, Lee SH, Lee DS (2015) J Nanosci Nanotechnol 15:211–214

    CAS  Google Scholar 

  48. Estravís S, Tirado-Mediavilla J, Santiago-Calvo M, Luis-Ruiz-Herrero J, Villafañe F, Ángel-Rodríguez-Pérez M (2016) Eur Polym J 80:1–15

    Google Scholar 

  49. Choi SW, Jung JM, Yoo HM, Kim SH, Il-Lee W (2018) J Therm Anal Calorim 132:1253–1262

    CAS  Google Scholar 

  50. Acuña P, Santiago-Calvo M, Villafañe F, Rodríguez-Perez MA, Rosas J, Wang DY (2018) Polym Compos 40:E1705–E1715

    Google Scholar 

  51. Mosiewicki MA, Dell’Arciprete GA, Aranguren MI, Marcovich NE (2009) J Compos Mater 43:3057–3072

    CAS  Google Scholar 

  52. Zhang C, Kessler MR, Sustain ACS (2015) Chem Eng 3:743–749

    CAS  Google Scholar 

  53. Hejna A, Kirpluks M, Kosmela P, Cabulis U, Haponiuk J, Piszczyk Ł (2017) Ind Crops Prod 95:113–125

    CAS  Google Scholar 

  54. Duan HJ, Kang HQ, Zhang WQ, Ji X, Li ZM, Tang JH (2014) Polym Int 63:72–83

    CAS  Google Scholar 

  55. Gama N, Costa LC, Amaral V, Ferreira A, Barros-Timmons A (2017) Compos Sci Technol 138:24–31

    CAS  Google Scholar 

  56. Acuña P, Li Z, Santiago-Calvo M, Villafañe F, Ángel-Rodríguez-Perez M, Wang DY (2019) Polymers (Basel) 11:168

    Google Scholar 

  57. Kim H, Miura Y, Macosko CW (2010) Chem Mater 22:3441–3450

    CAS  Google Scholar 

  58. Wang X, Hu Y, Song L, Yang H, Xing W, Lu H (2011) J Mater Chem 21:4222

    CAS  Google Scholar 

  59. Santiago-Calvo M, Blasco V, Ruiz C, París R, Villafañe F, Rodríguez-Pérez MÁ (2017) Eur Polym J 97:230–240

    CAS  Google Scholar 

  60. Bian J, Lin HL, He FX, Wei XW, Chang I-T, Sancaktar E (2013) Compos Part A Appl Sci Manuf 47:72–82

    CAS  Google Scholar 

  61. Bourbigot S, Duquesne S (2007) J Mater Chem 17:2283–2300

    CAS  Google Scholar 

  62. Gómez-Fernández S, Günther M, Schartel B, Corcuera MA, Eceiza A (2018) Ind Crops Prod 125:346–359

    Google Scholar 

  63. Modesti M, Lorenzetti A, Besco S, Hrelja D, Semenzato S, Bertani R, Michelin RA. Polym Degrad Stab https://doi.org/10.1016/j.polymdegradstab.2008.08.005

  64. Xu W, Wang G, Zheng X (2015) Polym Degrad Stab 111:142–150

    CAS  Google Scholar 

  65. Wang X, Hu Y, Song L, Xuan S, Xing W, Bai Z, Lu H (2011) Ind Eng Chem Res 50:713–720

    CAS  Google Scholar 

  66. Lorenzetti A, Dittrich B, Schartel B, Roso M, Modesti M (2017) J Appl Polym Sci 134:1–8

    Google Scholar 

  67. Shi X, Peng X, Zhu J, Lin G, Kuang T (2018) J Colloid Interface Sci 524:267–278

    CAS  Google Scholar 

  68. Wang S, Du X, Jiang Y, Xu J, Zhou M, Wang H, Cheng X, Du Z (2019) J Colloid Interface Sci 537:197–205

    CAS  Google Scholar 

  69. Chen X, Liu Y, Bai S, Wang Q (2014) Polym Plast Technol Eng 53:1402–1407

    CAS  Google Scholar 

Download references

Acknowledgements

Special acknowledgments to MORCHEM SA (Barcelona, Spain) for allowing us to use their specific polyurethane facilities to analyze our flame-retardant polyols and isocyanates used in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Yi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4862 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acuña, P., Zhang, J., Yin, GZ. et al. Bio-based rigid polyurethane foam from castor oil with excellent flame retardancy and high insulation capacity via cooperation with carbon-based materials. J Mater Sci 56, 2684–2701 (2021). https://doi.org/10.1007/s10853-020-05125-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05125-0

Navigation