Structure design of MoS2@Mo2C on nitrogen-doped carbon for enhanced alkaline hydrogen evolution reaction

Abstract

Non-precious metal-based electrocatalyst with high activity and stability for efficient hydrogen evolution reaction (HER) is of critical importance toward low-cost and large-scale water splitting. Traditional MoS2 has electrocatalytic hydrogen evolution inertness in alkaline environment, which is detrimental to the adsorption and dissociation of water. Composited with electrocatalyst with good electrical conductivity can enhance its HER activity. In this work, we for the first time construct a carbon-supported hollow heterostructure MoS2@Mo2C composite via two-step calcination and sulfurized process from carbonized Mo2C–Mo3C2 heteronanowires. The results show that the existence of the Mo3C2 phase is the key point to construct the effective heterostructure with hollow morphology. Due to the strong negative hydrogen binding energy for H on surface of Mo2C, the H+ reduction in the MoS2@Mo2C in the Volmer step can be enhanced. Compared with MoS2, MoS2@Mo2C has high electrocatalytic activity for hydrogen evolution with an onset potential of 28 mV, overpotential of 129 mV at the current density of 10 mA cm−2, a small Tafel slope of 78 mV dec−1, and an excellent stability. This work will provide new insights into the design of high-efficiency HER catalysts via interfacial engineering at nanoscale for commercial water splitting.

Graphic abstract

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1

    Ye G, Gong Y, Lin J, Li B, He Y, Pantelides ST, Zhou W, Vagtai R, Ajayan PM (2016) Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett 16:1097–1103

    CAS  Article  Google Scholar 

  2. 2

    Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    CAS  Article  Google Scholar 

  3. 3

    Wu X, Fan Z, Ling X, Wu S, Chen X, Hu X, Zhuang N, Chen J (2018) Enhanced lithium-ion storage and hydrogen evolution reaction catalysis of MoS2/graphene nanoribbons hybrids with loose interlaced three-dimension structure. J Nanopart Res 20:156. https://doi.org/10.1007/s11051-018-4205-7

    CAS  Article  Google Scholar 

  4. 4

    Liang Y, Li Y, Wang H, Dai H (2013) Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc 135:2013–2036

    CAS  Article  Google Scholar 

  5. 5

    Wang X, Zheng Y, Yuan J, Shen J, Niu L, Wang A (2017) Controllable synthesis of caterpilliar-like molybdenum sulfide@ carbon nanotube hybrids with core shell structure for hydrogen evolution. Electrochimca Acta 235:422–428

    CAS  Article  Google Scholar 

  6. 6

    Gnanasekar P, Periyanagounder D, Kulandaivel J (2019) Vertically aligned MoS2 nanosheets on graphene for highly stable electrocatalytic hydrogen evolution reactions. Nanoscale 11:2439–2446

    CAS  Article  Google Scholar 

  7. 7

    Wang H, Yi Q, Gao L, Gao Y, Liu T, Jiang YB, Zou G (2017) Hierarchically interconnected nitrogen-doped carbon nanosheets for an efficient hydrogen evolution reaction. Nanoscale 9:16342–16348

    CAS  Article  Google Scholar 

  8. 8

    Fang Z, Peng L, Qian Y, Zhang X, Xie Y, Cha JJ, Yu G (2018) Dual tuning of Ni–Co–A (A= P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J Am Chem Soc 140:5241–5247

    CAS  Article  Google Scholar 

  9. 9

    Zhu C, Wang AL, Xiao W, Chao D, Zhang X, Tiep NH, Chen S, Kang JN, Wang X, Ding J, Wang J, Zhang H, Fan HJ (2018) In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting. Nature Mater 30:1705516. https://doi.org/10.1002/adma.201705516

    CAS  Article  Google Scholar 

  10. 10

    Li J, Yan M, Zhou X, Huang ZQ, Xia Z, Chang CR, Ma YY, Qu Y (2016) Mechanistic insights on ternary Ni2-xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Adv Funct Mater 26:6785–6796

    CAS  Article  Google Scholar 

  11. 11

    Wu Y, Liu X, Han D, Song X, Shi L, Song Y, Wang G (2018) Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat Commun 9:1425. https://doi.org/10.1038/s41467-018-03858-w

    CAS  Article  Google Scholar 

  12. 12

    Chen Z, Song Y, Cai J, Zheng X, Han D, Wu Y, Zang YP, Wang SWG (2018) Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew ChemInt Edit 57:5076–5080

    CAS  Article  Google Scholar 

  13. 13

    Kou T, Smart T, Yao B, Chen I, Thota D, Ping Y, Li Y (2018) Theoretical and experimental insight into the effect of nitrogen doping on hydrogen evolution activity of Ni3S2 in alkaline medium. Adv Energy Mater 8:1703538. https://doi.org/10.1002/aenm.201703538

    CAS  Article  Google Scholar 

  14. 14

    Tran PD, Tran TV, Orio M, Torelli S, Truong QD, Nayuki K, Sasaki Y, Chiam SY, Artero V (2016) Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nature Mater 15:640. https://doi.org/10.1038/nmat4588

    CAS  Article  Google Scholar 

  15. 15

    Wang D, Su B, Jiang Y, Li L, Ng BK, Wu Z, Liu F (2017) Polytype 1T/2H MoS2 heterostructures for efficient photoelectrocatalytic hydrogen evolution. Chem Eng J 330:102–108

    CAS  Article  Google Scholar 

  16. 16

    Hu J, Zhang C, Jiang L, Lin H, An Y, Zhou D, Yang S (2017) Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 1:383–393

    CAS  Article  Google Scholar 

  17. 17

    Zhang B, Liu J, Wang J, Ruan Y, Ji X, Xu K, Chen C, Wan HZ, Miao L, Jiang J (2017) Interface engineering: the Ni (OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 37:74–80

    CAS  Article  Google Scholar 

  18. 18

    Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R, Liu S, Feng X (2016) Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew Chem Int Ed 55:6702–6707

    CAS  Article  Google Scholar 

  19. 19

    Zhao G, Li P, Rui K, Chen Y, Dou SX, Sun W (2018) CoSe2/MoSe2 Heterostructures with enriched water adsorption/dissociation sites towards enhanced alkaline hydrogen evolution reaction. Chem Eur J 24:11158–11165

    CAS  Article  Google Scholar 

  20. 20

    Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355:4998. https://doi.org/10.1126/science.aad4998

    Article  Google Scholar 

  21. 21

    Zang YP, Niu SW, Wu YS, Zheng XS, Cai JY, Ye J, Xie YF, Liu Y, Zhou JB, Zhu JF, Liu XJ, Wang GM, Qian YT (2019) Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat Commun 10:1217. https://doi.org/10.1038/s41467-019-09210-0

    CAS  Article  Google Scholar 

  22. 22

    Li R, Yang L, Xiong T, Wu Y, Cao L, Yuan D, Zhou W (2017) Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J Power Sources 356:133–139

    CAS  Article  Google Scholar 

  23. 23

    Meng XY, Yu L, Ma C, Nan B, Si R, Tu YC, Deng J, Bao XH (2019) Three-dimensionally hierarchical MoS2/graphene architecture for high-performance hydrogen evolution reaction. Nano Energy 61:611–616

    CAS  Article  Google Scholar 

  24. 24

    Guo J, Liu C, Sun Y, Sun J, Zhang W, Si T, Zhang X (2018) N-doped MoS2 nanosheets with exposed edges realizing robust electrochemical hydrogen evolution. J Solid State Chem 263:84–87

    CAS  Article  Google Scholar 

  25. 25

    Wei Y, Zhang X, Zhao Z, Chen HS, Matras-Postolek K, Wang B, Yang P (2018) Controllable synthesis of P-doped MoS2 nanopetals decorated N-doped hollow carbon spheres towards enhanced hydrogen evolution. Electrochem Acta 12:19. https://doi.org/10.1016/j.electacta.2018.12.019

    CAS  Article  Google Scholar 

  26. 26

    Xu W, Song W, Liu F, Wang Z, Jin G, Li C, Chen C (2019) Facile Synthesis of N-doped hollow carbon spheres@MoS2 via polymer microspheres template method and one-step calcination for enhanced hydrogen evolution reaction. ChemElectroChem 6:1101–1106

    CAS  Article  Google Scholar 

  27. 27

    Zhao YR, Bai TT, Jia LN, Xin W, Hu YF, Zheng XS, Hou ST (2019) probing the structural and electronic properties of neutral and anionic lanthanum-doped silicon clusters. J Phys Chem C 123(47):28561–28568

    Article  Google Scholar 

  28. 28

    Tang W, Wang X, Zhong Y, Xie D, Zhang X, Xia X, Wu JB, Gu CD, Tu J (2018) Hierarchical MoS2/Carbon composite microspheres as advanced anodes for Lithium/Sodium-ion batteries. Chem Eur J 24:11220–11226

    CAS  Article  Google Scholar 

  29. 29

    Chen G, Wang SP, Yi R, Tan LF, Li HB, Zhou M, Yan LT, Jiang YB, Tian S, Wang DH, Deng SG, Meng XW, Luo HM (2016) Facile synthesis of hierarchical MoS2-carbon microspheres as a robust anode for lithium ion batterie. J Mater Chem A 4:9653–9660

    CAS  Article  Google Scholar 

  30. 30

    Wang S, Zhang L, Qin Y, Ding D, Bu Y, Chu F, Liu M, Co (2017) N-codoped graphene as efficient electrocatalyst for hydrogen evolution reaction: insight into the active centre. J. Power Sources 363:260–268

    CAS  Article  Google Scholar 

  31. 31

    Liu BT, Wang SW, Mo QH, Peng LL, Cao SX, Wang J, Wu CR, Li C, Guo J, Liu BQ, Chen WB, Lin Y (2018) Epitaxial MoS2 nanosheets on nitrogen doped graphite foam as a 3D electrode for highly efficient electrochemical hydrogen evolution. Electrochem Acta 292:407–418

    CAS  Article  Google Scholar 

  32. 32

    Yao K, Xu Z, Huang J, Ma M, Fu L, Shen X, Li J, Fu M (2019) Bundled defect rich MoS2 for a high-rate and long-life sodium-ion battery: achieving 3d diffusion of sodium ion by vacancies to improve kinetics. Small 15:1805405. https://doi.org/10.1002/smll.201805405

    CAS  Article  Google Scholar 

  33. 33

    Zhao X, Zhao Y, Huang B, Cai W, Sui J, Yang Z, Wang HE (2019) MoSe2 nanoplatelets with enriched active edge sites for superior sodium-ion storage and enhanced alkaline hydrogen evolution activity. Chem. Eng. J 382:123047. https://doi.org/10.1016/j.cej.2019.123047

    CAS  Article  Google Scholar 

  34. 34

    Chung DY, Jun SW, Yoon G, Kim H, Yoo JM, Lee KS (2017) Large-scale synthesis of carbon-shell-coated FeP nanoparticles for robust hydrogen evolution reaction electrocatalyst. J Am Chem Soc 139:6669–6674

    CAS  Article  Google Scholar 

  35. 35

    Jia LN, Li C, Zhao YR, Liu BT, Cao SX, Mu DD, Han T, Chen G, Lin Y (2019) Interfacial engineering of Mo2C–Mo3C2 heteronanowires for high performance hydrogen evolution reaction. Nanoscale 11:23318–23329

    CAS  Article  Google Scholar 

  36. 36

    Liu YP, Yu G, Li GD, Sun Y, Asefa T, Zou X (2015) Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew Chem 37:10902–10907

    Article  Google Scholar 

  37. 37

    Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330

    CAS  Article  Google Scholar 

  38. 38

    Zhang X, Wang J, Guo T, Liu T, Wu Z, Cavallo L, Cao Z, Wang D (2019) Structure and phase regulation in MoxC (α-MoC1-x/β-Mo2C) to enhance hydrogen evolution. Appl Catal B 247:78–85

    CAS  Article  Google Scholar 

  39. 39

    Fu YQ, Du HG, Zhang S, Huang WM (2005) XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate. Mater Sci Eng A 403:25–31

    Article  Google Scholar 

  40. 40

    Zha Y, Kamiya K, Hashimoto K, Nakanishi S (2014) In situ CO2-emission assisted synthesis of molybdenum carbonitride nanomaterial as hydrogen evolution electrocatalyst. J Am Chem Soc 137:110–113

    Article  Google Scholar 

  41. 41

    Fu Y, Du H, Zhang S, Huang W (2005) XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate. Mater. Sci. Eng, A 403:25–31

    Article  Google Scholar 

  42. 42

    Zhao Y, Kamiya K, Hashimoto K, Nakanishi S (2014) In situ CO2-emission assisted synthesis of molybdenum carbonitride nanomaterial as hydrogen evolution electrocatalyst. J Am Chem Soc 137:110–113

    Article  Google Scholar 

  43. 43

    Ma RG, Zhou Y, Chen YF, Li PX, Liu Q, Wang JC (2015) Ultrafine molybdenum carbide nanoparticles composited with carbon as a highly active hydrogen-evolution electrocatalyst. Angew Chem Int Edit 54:14723–14727

    CAS  Article  Google Scholar 

  44. 44

    Wang S, Zhang D, Li B, Zhang C, Du Z, Yin H, Yang S (2018) Ultrastable In-Plane 1T–2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv Energy Mater 8:1801345. https://doi.org/10.1002/aenm.201801345

    CAS  Article  Google Scholar 

  45. 45

    Pu ZH, Liu Q, Asiri AM, Luo Y, Sun X, He Y (2015) 3D macroporous MoS2 thin film: in situ hydrothermal preparation and application as a highly active hydrogen evolution electrocatalyst at all pH values. Electrochim Acta 168:133–138

    CAS  Article  Google Scholar 

  46. 46

    Li H, Qian X, Xu C, Huang S, Zhu C, Jiang X, Hou L (2017) Hierarchical porous Co9S8/nitrogen-doped carbon@ MoS2 polyhedrons as pH universal electrocatalysts for highly efficient hydrogen evolution reaction. ACS Appl Mater Interfaces 9:28394–28405

    CAS  Article  Google Scholar 

  47. 47

    Staszak-Jirkovský J, Malliakas CD, Lopes PP, Danilovic N, Kota SS, Chang KC, Markovic NM (2016) Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nature Mater 15:197. https://doi.org/10.1038/nmat4481

    CAS  Article  Google Scholar 

  48. 48

    Mao B, Wang B, Yu F, Zhang K, Zhang Z, Hao J, Shi W (2018) Hierarchical MoS2 nanoflowers on carbon cloth as an efficient cathode electrode for hydrogen evolution under all pH values. Int J Hydrogen Energy 43:11038–11046

    CAS  Article  Google Scholar 

  49. 49

    Anjum MAR, Jeong HY, Lee MH, Shin HS, Lee JS (2018) Efficient hydrogen evolution reaction catalysis in alkaline media by all-in-one MoS2 with multifunctional active sites. Adv Mater 30:1707105. https://doi.org/10.1002/adma.201707105

    CAS  Article  Google Scholar 

  50. 50

    Wu CR, Liu BT, Wang J, Su YY, Yan HQ, Ng CT, Li C, Wei JM (2018) 3D structured Mo-doped Ni3S2 nanosheets as efficient dual-electrocatalyst for overall water splitting. Appl Surf Sci 441:1024–1033

    CAS  Article  Google Scholar 

  51. 51

    Liu BT, Wu CR, Chen G, Chen WB, Peng LL, Yao YC, Wei Z, Zhu H, Han T, Tang DY, Zhou M (2019) All-in-one surface engineering strategy on nickel phosphide arrays towards a robust electrocatalyst for hydrogen evolution reaction. J Power Sources 429:46–54

    CAS  Article  Google Scholar 

  52. 52

    Chen YF, Li C, Ma XL, Qiang QP, Liu BT, Cao SX, Peng LL, Li L, Lang TC (2020) Interface defect engineering induced drastic sensing performance enhancement of W18O49@PANI nanowires for ammonia detection at room temperature. Appl Surf Sci 506:144816. https://doi.org/10.1016/j.apsusc.2019.144816

    CAS  Article  Google Scholar 

  53. 53

    Chen YF, Ma XL, Li C, Wu QY, Wang YB, Huang MJ, Liu BT, Li L (2020) Oxygen vacancies-contained SnO2 nanotubes with enhanced ethanol gas sensing properties. Int J Mod Phys B 34:2040003. https://doi.org/10.1142/S0217979220400032

    CAS  Article  Google Scholar 

  54. 54

    Jia AQ, Liu BT, Liu HY, Li QF, Yun YX (2020) Interface design of SnO2@PANI nanotube with enhanced sensing performance for ammonia detection at room temperature. Frontiers Chem 8:383. https://doi.org/10.3389/fchem.2020.00383

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Funds of China (Grant No. 11804038), Chongqing Natural Science Foundation (cstc2017jcyjAX0259, cstc2017jcyjAX0141, cstc2017jcyjA1821, cstc2017jcyjAX0418 and cstc2018jcyjAX0569), China Postdoctoral Science Foundation 2019M663575, Yunan Postdoctoral Science Foundation, Chongqing university outstanding achievement transformation Projects (KJZH17130), Chongqing high school youth backbone teacher funding scheme.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Bitao Liu or Yaru Zhao or Lei Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4640 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, L., Liu, B., Zhao, Y. et al. Structure design of MoS2@Mo2C on nitrogen-doped carbon for enhanced alkaline hydrogen evolution reaction. J Mater Sci 55, 16197–16210 (2020). https://doi.org/10.1007/s10853-020-05107-2

Download citation