Skip to main content

Flame suppression of polyamide through combined enzymatic modification and addition of urea to multilayer nanocoating

Abstract

To overcome the flammability of polyamide, an intumescent ammonium polyphosphate (APP) and chitosan (CH) system, with and without thiourea (THU) and urea (U) dissolved into the chitosan solution, was deposited on an enzymatically modified textile via layer-by-layer (LbL) assembly. Fifteen bilayers (BL) of APP/CH:THU, or 15 BL APP/CH:U, deposited onto the polyamide results in self-extinguishing behavior in horizontal flame testing and a 35% reduction in peak heat release rate (pkHRR). The urea-based additives serve as blowing agents that, upon heating, create gas that increases the bubbled-char structure that acts as a physical barrier. The addition of these low-molecular weight molecules, combined with enzymatic modification of the polyamide fiber surface, is a new opportunity to impart flame retardancy to this highly flammable and widely-used polymer.

Graphic abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Richards AF (2005) Nylon fibers. In: McIntyre JE (ed) Synthetic fibers: nylon, polyester, acrylic, polyolefin. Woodhead Publishing, Cambridge, p 20

    Chapter  Google Scholar 

  2. Horrocks AR (2016) Technical fibers for heat and flame protection. In: Horrocks AR, Anand SC (eds) Handbook of technical textiles: technical textile applications. Woodhead Publishing, Cambridge, p 237

    Chapter  Google Scholar 

  3. Vasiljević J, Čolović M, Jerman I, Simončič B (2018) Recent advances in production of flame retardant polyamide 6 filament yarns. Tekstilec 61:136–148. https://doi.org/10.14502/Tekstilec2018.61.136-148

    Article  Google Scholar 

  4. Weil ED, Levchik SV (2016) Flame Retardants for Plastics and Textiles: Practical Applications Second. Hanser Publishers, Munich

    Google Scholar 

  5. Levchik SV, Weil ED (2000) Combustion and fire retardancy of aliphatic nylons. Polym Int 49:1033–1073. https://doi.org/10.1002/1097-0126(200010)49:10<1033:AID-PI518>3.0.CO;2-I

    CAS  Article  Google Scholar 

  6. Levchik SV, Weil ED, Lewin M (1999) Thermal decomposition of aliphatic nylons. Polym Int 48:532–557. https://doi.org/10.1002/(SICI)1097-0126(199907)48:7<532:AID-PI214>3.0.CO;2-R

    CAS  Article  Google Scholar 

  7. Horrocks AR (2008) Flame-retardant finishing of textiles. Rev Prog Color Relat Top 16:62–101. https://doi.org/10.1111/j.1478-4408.1986.tb03745.x

    Article  Google Scholar 

  8. Coquelle M, Duquesne S, Casetta M, Sun J, Gu X, Zhang S, Bourbigot S (2015) Flame retardancy of PA6 using guanidine sulfamate/melamine polyphosphate mixture. Polymers 7:316–332. https://doi.org/10.3390/polym7020316

    CAS  Article  Google Scholar 

  9. Šehić A, Vasiljević J, Jordanov I, Demšar A, Medved J, Jerman I, Čolović M, Hewitt F, Hull R, Simončič B (2018) Influence of N-, P- and Si-based flame retardant mixtures on flammability, thermal behavior and mechanical properties of PA6 composite fibers. Fibers Polym 19:1194–1206. https://doi.org/10.1007/s12221-018-8059-5

    CAS  Article  Google Scholar 

  10. Šehić A, Vasiljević J, Demšar A, Leskovšek M, Bukošek V, Medved J, Čolović M, Jerman I, Simončič B (2018) Polyamide 6 composite fiber with incorporated mixures of melamine cyanurate, carbon nanotubes, and carbon black. J Appl Polym Sci 136:47007. https://doi.org/10.1002/app.47007

    CAS  Article  Google Scholar 

  11. Šehić A, Jordanov I, Demšar A, Vasiljević J, Bukošek V, Naglič I, Medved J, Simončič B (2016) Influence of flame retardant additive on thermal behaviour and stability of fiber-forming polyamide 6. Tekstilec 59:149–155. https://doi.org/10.14502/Tekstilec2016.59.149-155

    Article  Google Scholar 

  12. Vasiljević J, Colović M, Jerman I, Simončič B, Demšar A, Samaki Y, Šobak M, Šest E, Golja B, Leskovšek M, Bukošek V, Medved J, Barbalini M, Malucelli G, Bolka S (2019) In situ prepared polyamide 6/DOPO-derivative nanocomposite for melt-spinning of flame retardant filaments. Polym Degrad Stab 166:50–59. https://doi.org/10.1016/j.polymdegradstab.2019.05.011

    CAS  Article  Google Scholar 

  13. Alongi J, Carosio F, Malucelli G (2014) Current emerging techniques to impart flame retardancy to fabrics: an overview. Polym Degrad Stab 106:138–149. https://doi.org/10.1016/j.polymdegradstab.2013.07.012

    CAS  Article  Google Scholar 

  14. Qiu X, Li Z, Li X, Zhang Z (2018) Flame retardant coatings prepared using layer by layer assembly: a review. Chem Eng J 334:108–122. https://doi.org/10.1016/j.cej.2017.09.194

    CAS  Article  Google Scholar 

  15. Lazar ST, Kolibaba TJ, Grunlan JC (2020) Flame-retardant surface treatments. Nat Rev Mater 5:259–275. https://doi.org/10.1038/s41578-019-0164-6

    CAS  Article  Google Scholar 

  16. Hammond PT (2004) Form and function in multilayer assembly: new applications at the nanoscale. Adv Mater 16:1271–1293. https://doi.org/10.1002/adma.200400760

    CAS  Article  Google Scholar 

  17. Richardson JJ, Cui J, Björnmalm M, Braunger JA, Ejima H, Caruso F (2016) Innovation in layer-by-layer assembly. Chem Rev 116:14828–14867. https://doi.org/10.1021/acs.chemrev.6b00627

    CAS  Article  Google Scholar 

  18. Zhang X, Xu Y, Zhang X, Wu H, Shen J, Chen R, Xiong Y, Li J, Guo S (2019) Progress on the layer-by-layer assembly of multilayered polymer composites: strategy, structural control and applications. Prog Polym Sci 89:76–107. https://doi.org/10.1016/j.progpolymsci.2018.10.002

    CAS  Article  Google Scholar 

  19. Alongi J, Han Z, Bourbigot S (2015) Intumescence: tradition versus novelty. A comprehensive review. Prog Polym Sci 51:28–73. https://doi.org/10.1016/j.progpolymsci.2015.04.010

    CAS  Article  Google Scholar 

  20. Camino G, Costa L, Trossarelli L (1984) Study of the mechanism of intumescence in fire retardant polymers: Part l—thermal degradation of ammonium polyphosphate-pentaerythritol mixtures. Polym Degrad Stab 6:243–252. https://doi.org/10.1016/0141-3910(84)90004-1

    CAS  Article  Google Scholar 

  21. Camino G, Costa L, Trossarelli L (1984) Study of the mechanism of intumescence in fire retardant polymers: Part II—mechanism of action in polypropylene-ammonium polyphosphate-pentaerythritol mixtures. Polym Degrad Stab 7:25–31. https://doi.org/10.1016/0141-3910(84)90027-2

    CAS  Article  Google Scholar 

  22. Camino G, Costa L, Trossarelli L (1984) Study of the mechanism of intumescence in fire retardant polymers: Part Ill-effect of urea on the ammonium polyphosphate-pentaerythritol system. Polym Degrad Stab 7:221–229. https://doi.org/10.1016/0141-3910(84)90098-3

    CAS  Article  Google Scholar 

  23. Li Y-C, Mannen S, Morgan AB, Chan SC, Yang Y-H, Condon B, Grunlan JC (2011) Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric. Adv Mater 23:3926–3931. https://doi.org/10.1002/adma.201101871

    CAS  Article  Google Scholar 

  24. Alongi J, Carletto RA, Bosco F, Carosio F, Di Blasio A, Cuttica F, Antonucci V, Giordano M, Malucelli G (2014) Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polym Degrad Stab 99:111–117. https://doi.org/10.1016/j.polymdegradstab.2013.11.016

    CAS  Article  Google Scholar 

  25. Carosio F, Alongi J, Malucelli G (2013) Flammability and combustion properties of ammonium polyphosphate-/poly(acrylic acid)- based layer by layer architectures deposited on cotton, polyester and their blends. Polym Degrad Stab 98:1626–1637. https://doi.org/10.1016/j.polymdegradstab.2013.06.019

    CAS  Article  Google Scholar 

  26. Leistner M, Abu-Odeh AA, Rohmer SC, Grunlan JC (2015) Water-based chitosan/melamine polyphosphate multilayer nanocoating that extinguishes fire on polyester-cotton fabric. Carbohydr Polym 130:227–232. https://doi.org/10.1016/j.carbpol.2015.05.005

    CAS  Article  Google Scholar 

  27. Narkhede M, Thota S, Mosurkal R, Muller WS, Kumar J (2016) Layer-by-layer assembly of halogen-free polymeric materials on nylon/cotton blend for flame retardant applications: layer-by-layer assembly of halogen-free polymeric materials. Fire Mater 40:206–218. https://doi.org/10.1002/fam.2280

    CAS  Article  Google Scholar 

  28. Liu L, Pan Y, Wang Z, Hou Y, Gui Z, Hu Y (2017) Layer-by-layer assembly of hypophosphorous acid-modified chitosan based coating for flame-retardant polyester-cotton blends. Ind Eng Chem Res 56:9429–9436. https://doi.org/10.1021/acs.iecr.7b02303

    CAS  Article  Google Scholar 

  29. Li S, Lin X, Liu Y, Li R, Ren X, Huang T-S (2019) Phosphorus-nitrogen-silicon-based assembly multilayer coating for the preparation of flame retardant and antimicrobial cotton fabric. Cellulose 26:4213–4223. https://doi.org/10.1007/s10570-019-02373-5

    CAS  Article  Google Scholar 

  30. Jordanov I, Magovac E, Fahami A, Lazar S, Kolibaba T, Smith RJ, Bischof S, Grunlan JC (2019) Flame retardant polyester fabric from nitrogen-rich low molecular weight additives within intumescent nanocoating. Polym Degrad Stab 170:108998. https://doi.org/10.1016/j.polymdegradstab.2019.108998

    CAS  Article  Google Scholar 

  31. Apaydin K, Laachachi A, Ball V, Jimenez M, Bourbigot S, Toniazzo V, Ruch D (2014) Intumescent coating of (polyallylamine-polyphosphates) deposited on polyamide fabrics via layer-by-layer technique. Polym Degrad Stab 106:158–164. https://doi.org/10.1016/j.polymdegradstab.2014.01.006

    CAS  Article  Google Scholar 

  32. Pan Y, Zhao H (2018) A novel blowing agent polyelectrolyte for fabrication intumescent multilayer coating that retards fire on cotton fabric. J Appl Polym Sci 135:46583. https://doi.org/10.1002/app.46583

    CAS  Article  Google Scholar 

  33. Leistner M, Haile M, Rohmer SC, Abu-Odeh AA, Grunlan JC (2015) Water-soluble polyelectrolyte complex nanocoating for flame retardant nylon-cotton fabric. Polym Degrad Stab 122:1–7. https://doi.org/10.1016/j.polymdegradstab.2015.10.008

    Article  Google Scholar 

  34. Jordanov I, Stevens DL, Tarbuk A, Magovac E, Bischof S, Grunlan JC (2019) Enzymatic modification of polyamide for improving the conductivity of water-based multilayer nanocoatings. ACS Omega 4:12028–12035. https://doi.org/10.1021/acsomega.9b01052

    CAS  Article  Google Scholar 

  35. Holder KM, Huff ME, Cosio MN, Grunlan JC (2015) Intumescing multilayer thin film deposited on clay-based nanobrick wall to produce self-extinguishing flame retardant polyurethane. J Mater Sci 50:2451–2458. https://doi.org/10.1007/s10853-014-8800-4

    CAS  Article  Google Scholar 

  36. Jimenez M, Guin T, Bellayer S, Dupretz R, Bourbigot S, Grunlan JC (2016) Microintumescent mechanism of flame-retardant water-based chitosan-ammonium polyphosphate multilayer nanocoating on cotton fabric. J Appl Polym Sci 133:43783. https://doi.org/10.1002/app.43783

    CAS  Article  Google Scholar 

  37. Horrocks AR, Tune M, Cegielka L (1988) The burning behaviour of textiles and its assessment by oxygen-index methods. Text Prog 18:1–186. https://doi.org/10.1080/00405168908689004

    Article  Google Scholar 

  38. Balabanovich AI (2003) The effect of ammonium polyphosphate on the combustion and thermal decomposition behavior of poly(butylene terephthalate). J Fire Sci 21:285–298. https://doi.org/10.1177/0734904103021004003

    CAS  Article  Google Scholar 

  39. Schaber PM, Colson J, Higgins S, Dietz E, Thielen D, Anspach B, Brauer J (1999) Study of the urea thermal decomposition (pyrolysis) reaction and importance to cyanuric acid production. Am Lab 31:13–21

    CAS  Google Scholar 

  40. Schaber PM, Colson J, Higgins S, Thielen D, Anspach B, Brauer J (2004) Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim Acta 424:131–142. https://doi.org/10.1016/j.tca.2004.05.018

    CAS  Article  Google Scholar 

  41. Wang ZD, Yoshida M, George B (2013) Theoretical study on the thermal decomposition of thiourea. Comput Theor Chem 1017:91–98. https://doi.org/10.1016/j.comptc.2013.05.007

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Fulbright Visiting Scholar Program of the US Department of State for supporting Professor Igor Jordanov’s stay/research at Texas A&M University (Grant No. E0581973).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Igor Jordanov or Jaime C. Grunlan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jordanov, I., Kolibaba, T.J., Lazar, S. et al. Flame suppression of polyamide through combined enzymatic modification and addition of urea to multilayer nanocoating. J Mater Sci 55, 15056–15067 (2020). https://doi.org/10.1007/s10853-020-05074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05074-8