Skip to main content

Understanding the effect of water transport on the thermal expansion properties of the perovskites BaFe0.6Co0.3Nb0.1O3−δ and BaCo0.7Yb0.2Bi0.1O3−δ

Abstract

In this paper, we report a study of the perovskite phases, BaFe0.6Co0.3Nb0.1O3−δ (BFCN) and BaCo0.7Yb0.2Bi0.1O3−δ (BCYB), as possible air electrode materials for solid oxide cells (SOCs). The crystal structures and thermal and chemical expansion properties are reported, and the stability evaluated in different atmospheres. The thermal expansion data show unusual behaviour, with apparent negative thermal expansion (NTE) behaviour at low temperatures (100–240 °C) up to − 11.6 × 10−6 K−1 for BFCN and up to − 17.3 × 10−6 K−1 for BCYB. This NTE behaviour is related to water incorporation at lower temperatures, which is then lost in this temperature range upon heating. In order to examine the potential of these materials for use in a solid oxide electrolyser, the stability at elevated temperatures in the presence of water was evaluated, which indicated that water vapour leads to increased degradation at SOC operation temperatures.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Fig.5
Fig.6
Fig.7
Figure 8
Figure 9

References

  1. Sun C, Hui R, Roller J (2010) Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem 14(7):1125–1144. https://doi.org/10.1007/s10008-009-0932-0

    CAS  Article  Google Scholar 

  2. Burnwal SK, Bharadwaj S, Kistaiah P (2016) Review on MIEC cathode materials for solid oxide fuel cells. J Mol Eng Mater 04(02):1630001. https://doi.org/10.1142/s2251237316300011

    CAS  Article  Google Scholar 

  3. Chen Y, Zhou W, Ding D, Liu M, Ciucci F, Tade M, Shao Z (2015) Advances in cathode materials for solid oxide fuel cells: complex oxides without alkaline earth metal elements. Adv Energy Mater 5(18):1500537. https://doi.org/10.1002/aenm.201500537

    CAS  Article  Google Scholar 

  4. Jiang S (2008) Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J Mater Sci 43:6799–6833. https://doi.org/10.1007/s10853-008-2966-6

    CAS  Article  Google Scholar 

  5. Shao Z, Halle SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431(7005):170–173. https://doi.org/10.1038/nature02863

    CAS  Article  Google Scholar 

  6. Magnone E (2010) A systematic literature review on BSCF-based cathodes for solid oxide fuel cell applications. J Fuel Cell Sci Technol 7:064001–064012. https://doi.org/10.1115/1.4001323

    CAS  Article  Google Scholar 

  7. Shen F, Lu K (2018) Comparison of different perovskite cathodes in solid oxide fuel cells. Fuel Cells 18(4):457–465. https://doi.org/10.1002/fuce.201800044

    CAS  Article  Google Scholar 

  8. Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3. Solid State Ionics 76(3–4):273–283. https://doi.org/10.1016/0167-2738(94)00245-N

    CAS  Article  Google Scholar 

  9. Ping Jiang S (2019) Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells—a review. Int J Hydrog Energy 44:7448–7493. https://doi.org/10.1016/j.ijhydene.2019.01.212

    CAS  Article  Google Scholar 

  10. Kim J, Sengodan S, Kwon G, Ding D, Shin J, Liu M, Kim G (2014) Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells. Chemsuschem 7(10):2811–2815. https://doi.org/10.1002/cssc.201402351

    CAS  Article  Google Scholar 

  11. Jiang Q, Cheng J, Wang R, Fan Y, Gao J (2012) Novel triple-phase composite cathode materials for proton-conducting solid oxide fuel cells. J Power Sources 206:47–52. https://doi.org/10.1016/j.jpowsour.2012.01.084

    CAS  Article  Google Scholar 

  12. Muñoz-García AB, Pavone M (2016) First-principles design of new electrodes for proton-conducting solid-oxide electrochemical cells: a-site doped Sr2Fe1.5Mo0.5O6−δ perovskite. Chem Mater 28(2):490–500. https://doi.org/10.1021/acs.chemmater.5b03262

    CAS  Article  Google Scholar 

  13. Strandbakke R, Cherepanov VA, Zuev AY, Tsvetkov DS, Argirusis C, Sourkouni G, Prünte S, Norby T (2015) Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics 278:120–132. https://doi.org/10.1016/j.ssi.2015.05.014

    CAS  Article  Google Scholar 

  14. Choi S, Kucharczyk CJ, Liang Y, Zhang X, Takeuchi I, Ji H-I, Haile SM (2018) Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat Energy 3(3):202–210. https://doi.org/10.1038/s41560-017-0085-9

    CAS  Article  Google Scholar 

  15. Zohourian R, Merkle R, Raimondi G, Maier J (2018) Mixed-conducting perovskites as cathode materials for protonic ceramic fuel cells: understanding the trends in proton uptake. Adv Funct Mater 28(35):1801241. https://doi.org/10.1002/adfm.201801241

    CAS  Article  Google Scholar 

  16. Yasuda I, Hishinuma M (2000) Lattice expansion of acceptor-doped lanthanum chromites under high-temperature reducing atmospheres. Electrochem 68(6):526–530. https://doi.org/10.5796/electrochemistry.68.526

    CAS  Article  Google Scholar 

  17. Løken A, Ricote S, Wachowski S (2018) Thermal and chemical expansion in proton ceramic electrolytes and compatible electrodes. Crystals. https://doi.org/10.3390/cryst8090365

    Article  Google Scholar 

  18. Barrera GD, Bruno JAO, Barron THK, Allan NL (2005) Negative thermal expansion. J Phys Condens Matter 17(4):R217–R252. https://doi.org/10.1088/0953-8984/17/4/r03

    CAS  Article  Google Scholar 

  19. Azuma M, Oka K, Nabetani K (2015) Negative thermal expansion induced by intermetallic charge transfer. Sci Technol Adv Mater 16(3):034904. https://doi.org/10.1088/1468-6996/16/3/034904

    CAS  Article  Google Scholar 

  20. Azuma M, Chen W-t, Seki H, Czapski M, Olga S, Oka K, Mizumaki M, Watanuki T, Ishimatsu N, Kawamura N, Ishiwata S, Tucker MG, Shimakawa Y, Attfield JP (2011) Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer. Nat Commun 2:347. https://doi.org/10.1038/ncomms1361

    CAS  Article  Google Scholar 

  21. Nabetani K, Muramatsu Y, Oka K, Nakano K, Hojo H, Mizumaki M, Agui A, Higo Y, Hayashi N, Takano M, Azuma M (2015) Suppression of temperature hysteresis in negative thermal expansion compound BiNi1−xFexO3 and zero-thermal expansion composite. Appl Phys Lett 106(6):061912. https://doi.org/10.1063/1.4908258

    CAS  Article  Google Scholar 

  22. Pan Z, Chen J, Yu R, Patra L, Ravindran P, Sanson A, Milazzo R, Carnera A, Hu L, Wang L, Yamamoto H, Ren Y, Huang Q, Sakai Y, Nishikubo T, Ogata T, Xa F, Li Y, Li G, Hojo H, Azuma M, Xing X (2019) Large negative thermal expansion induced by synergistic effects of ferroelectrostriction and spin crossover in PbTiO3-based perovskites. Chem Mater 31(4):1296–1303. https://doi.org/10.1021/acs.chemmater.8b04266

    CAS  Article  Google Scholar 

  23. Chen J, Wang F, Huang Q, Hu L, Song X, Deng J, Yu R, Xing X (2013) Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi, La)FeO3 over a giant range. Sci Rep 3:2458. https://doi.org/10.1038/srep02458

    Article  Google Scholar 

  24. Chen J, Fan L, Ren Y, Pan Z, Deng J, Yu R, Xing X (2013) Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3 Perovskite. Phys Rev Lett 110(11):115901. https://doi.org/10.1103/PhysRevLett.110.115901

    CAS  Article  Google Scholar 

  25. Woodcock DA, Lightfoot P, Villaescusa LA, Díaz-Cabañas M-J, Camblor MA, Engberg D (1999) Negative thermal expansion in the siliceous zeolites chabazite and ITQ-4: a neutron powder diffraction study. Chem Mater 11(9):2508–2514. https://doi.org/10.1021/cm991047q

    CAS  Article  Google Scholar 

  26. Lind C (2012) Two decades of negative thermal expansion research: where do we stand? Materials 5(6):1125–1154. https://doi.org/10.3390/ma5061125

    CAS  Article  Google Scholar 

  27. Evans JSO, Mary TA, Vogt T, Subramanian MA, Sleight AW (1996) Negative thermal expansion in ZrW2O8 and HfW2O8. Chem Mater 8(12):2809–2823. https://doi.org/10.1021/cm9602959

    CAS  Article  Google Scholar 

  28. Qi TF, Korneta OB, Parkin S, De Long LE, Schlottmann P, Cao G (2010) Negative volume thermal expansion via orbital and magnetic orders in Ca2Ru1−xCrxO4(0 < x < 013). Phys Rev Lett 105 (17):177203. https://doi.org/10.1103/PhysRevLett.105.177203

    CAS  Article  Google Scholar 

  29. Dove MT, Fang H (2016) Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation. Rep Prog Phys 79(6):066503. https://doi.org/10.1088/0034-4885/79/6/066503

    CAS  Article  Google Scholar 

  30. Ablitt C, Craddock S, Senn MS, Mostofi AA, Bristowe NC (2017) The origin of uniaxial negative thermal expansion in layered perovskites. NPJ Comput Mater 3(1):44. https://doi.org/10.1038/s41524-017-0040-0

    CAS  Article  Google Scholar 

  31. Ablitt C, Mostofi AA, Bristowe NC, Senn MS (2018) Control of uniaxial negative thermal expansion in layered perovskites by tuning layer thickness. Front Chem. https://doi.org/10.3389/fchem.2018.00455

    Article  Google Scholar 

  32. Meng J, Zhang L, Yao F, Zhang X, Zhang W, Liu X, Meng J, Zhang H (2017) Theoretical study on the negative thermal expansion perovskite LaCu3Fe4O12: pressure-triggered transition of magnetism, charge, and spin state. Inorg Chem 56(11):6371–6379. https://doi.org/10.1021/acs.inorgchem.7b00458

    CAS  Article  Google Scholar 

  33. Ge X, Mao Y, Liu X, Cheng Y, Yuan B, Chao M, Liang E (2016) Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12. Sci Rep 6:24832–24832. https://doi.org/10.1038/srep24832

    CAS  Article  Google Scholar 

  34. Haugsrud R (2003) On the high-temperature oxidation of nickel. Corros Sci 45(1):211–235. https://doi.org/10.1016/S0010-938X(02)00085-9

    Article  Google Scholar 

  35. Kreuer KD (2003) Proton-conducting oxides. Annu Rev Mater Res 33(1):333–359. https://doi.org/10.1146/annurev.matsci.33.022802.091825

    CAS  Article  Google Scholar 

  36. Lyagaeva J, Medvedev D, Demin A, Tsiakaras P (2015) Insights on thermal and transport features of BaCe0.8–xZrxY0.2O3–δ proton-conducting materials. J Power Sources. https://doi.org/10.1016/j.jpowsour.2014.12.024

    Article  Google Scholar 

  37. Onishi T, Han D, Noda Y, Hatada N, Majima M, Uda T (2018) Evaluation of performance and durability of Ni-BZY cermet electrodes with BZY electrolyte. Solid State Ionics 317:127–135. https://doi.org/10.1016/j.ssi.2018.01.015

    CAS  Article  Google Scholar 

  38. Bjørheim TS, Løken A, Haugsrud R (2016) On the relationship between chemical expansion and hydration thermodynamics of proton conducting perovskites. J Mater Chem A 4(16):5917–5924. https://doi.org/10.1039/C5TA10090A

    CAS  Article  Google Scholar 

  39. Iwahara H, Esaka T, Uchida H, Maeda N (1981) Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3–4:359–363. https://doi.org/10.1016/0167-2738(81)90113-2

    Article  Google Scholar 

  40. Li F, Liu X, Song W, Yuan B, Cheng Y, Yuan H, Cheng F, Chao M, Liang E (2014) Phase transition, crystal water and low thermal expansion behavior of Al2−2x(ZrMg)xW3O12·n(H2O). e. J. Solid State Chem. 218:15–22. https://doi.org/10.1016/j.jssc.2014.06.009

    CAS  Article  Google Scholar 

  41. Xu X, Wang H, Fronzi M, Wang X, Bi L, Traversa E (2019) Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J Mater Chem A. https://doi.org/10.1039/C9TA05300J

    Article  Google Scholar 

  42. Meng Y, Gao J, Zhao Z, Amoroso J, Tong J, Brinkman KS (2019) Review: recent progress in low-temperature proton-conducting ceramics. J Mater Sci 54(13):9291–9312. https://doi.org/10.1007/s10853-019-03559-9

    CAS  Article  Google Scholar 

  43. Lin Y, Zhou W, Sunarso J, Ran R, Shao Z (2012) Characterization and evaluation of BaCo0.7Fe0.2Nb0.1O3−δ as a cathode for proton-conducting solid oxide fuel cells. Int J Hydrog Energy 37:484–497. https://doi.org/10.1016/j.ijhydene.2011.09.010

    CAS  Article  Google Scholar 

  44. Cheng Y, Zhao H, Teng D, Li F, Lu X, Ding W (2008) Investigation of Ba fully occupied A-site BaCo0.7Fe0.3−xNbxO3−δ perovskite stabilized by low concentration of Nb for oxygen permeation membrane. J Membr Sci 322(2):484–490. https://doi.org/10.1016/j.memsci.2008.05.065

    CAS  Article  Google Scholar 

  45. Zhang J, Zhao H, Li Y, Xu N, Ding W, Lu X, Li F (2010) Effects of iron content on the structural evolution, electrical properties and thermochemical stability of BaCo0.9−xFexNb0.1O3−δ ceramic membrane. Int J Hydrog Energy 35(2):814–820. https://doi.org/10.1016/j.ijhydene.2009.10.101

    CAS  Article  Google Scholar 

  46. Yang C, Zhao F, Chen F, Liu M (2014) Investigation of A-site deficient Ba0.9Co0.7Fe0.2Nb0.1O3−δ cathode for proton conducting electrolyte based solid oxide fuel cells. Int J Hydrog Energy 39(16):8431–8436. https://doi.org/10.1016/j.ijhydene.2014.03.158

    CAS  Article  Google Scholar 

  47. ASTM E228−17—Standard test method for linear thermal expansion of solid materials with a push-rod dilatometer

  48. Toby BH, Von Dreele RB (2013) GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46(2):544–549. https://doi.org/10.1107/S0021889813003531

    CAS  Article  Google Scholar 

  49. Yi J, Schroeder M, Weirich T, Mayer J (2010) Behavior of Ba(Co, Fe, Nb)O3-δ perovskite in CO2-containing atmospheres: degradation mechanism and materials design. Chem Mater 22(23):6246–6253. https://doi.org/10.1021/cm101665r

    CAS  Article  Google Scholar 

  50. Sahini MG, Tolchard JR, Wiik K, Grande T (2015) High temperature X-ray diffraction and thermo-gravimetrical analysis of the cubic perovskite Ba0.5Sr0.5Co0.8Fe0.2O3−δ under different atmospheres. Dalton Trans 44(23):10875–10881. https://doi.org/10.1039/C4DT03963G

    CAS  Article  Google Scholar 

  51. Papargyriou D, Irvine J (2015) Nickel nanocatalyst exsolution from (La, Sr) (Cr, M, Ni)O3 (MMn, Fe) perovskites for the fuel oxidation layer of oxygen transport membranes. Solid State Ionics. https://doi.org/10.1016/j.ssi.2015.11.007

    Article  Google Scholar 

  52. Waidha AI, Ni L, Ali J, Lepple M, Donzelli M, Dasgupta S, Wollstadt S, Alff L, Kramm UI, Clemens O (2020) BaFe1xCoxO3yδ(OH)y catalysts for the oxygen reduction reaction and oxygen evolution reaction. J Mater Chem A 8(2):616–625. https://doi.org/10.1039/C9TA10222A

    CAS  Article  Google Scholar 

  53. Taguchi H, Komatsu T, Chiba R, Nozawa K, Orui H, Arai H (2011) Characterization of LaNixCoyFe1xyO3 as a cathode material for solid oxide fuel cells. Solid State Ionics 182(1):127–132. https://doi.org/10.1016/j.ssi.2010.11.015

    CAS  Article  Google Scholar 

  54. Radaelli PG, Cheong SW (2002) Structural phenomena associated with the spin-state transition in LaCoO3. Phys Rev B 66(9):094408. https://doi.org/10.1103/PhysRevB.66.094408

    CAS  Article  Google Scholar 

  55. Yi J, Feng S, Zuo Y, Liu W, Chen C (2005) Oxygen permeability and stability of Sr0.95Co0.8Fe0.2O3-δ in a CO2 and H2O-containing atmosphere. Chem Mater 17(23):5856–5861. https://doi.org/10.1021/cm051636y

    CAS  Article  Google Scholar 

  56. Zhu J, Andres CM, Xu J, Ramamoorthy A, Tsotsis T, Kotov NA (2012) Pseudonegative thermal expansion and the state of water in graphene oxide layered assemblies. ACS Nano 6(9):8357–8365. https://doi.org/10.1021/nn3031244

    CAS  Article  Google Scholar 

  57. Andres CM, Zhu J, Shyu T, Flynn C, Kotov NA (2014) Shape-morphing nanocomposite origami. Langmuir 30(19):5378–5385. https://doi.org/10.1021/la404955s

    CAS  Article  Google Scholar 

  58. Geng Z, Ding W, Wang H, Wu C, Shen P, Meng X, Gai Y, Ji F (2012) Influence of barium dissolution on microstructure and oxygen permeation performance of Ba1.0Co0.7Fe0.2Nb0.1O3−δ membrane in aqueous medium. J Membr Sci 403–404:140–145. https://doi.org/10.1016/j.memsci.2012.02.030

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank EPSRC (JUICED Hub EP/R023662/1) for funding. The authors express their thanks to CHART of the University of Birmingham for providing access to HR-TEM. The supporting information and raw data are available on a Web site https://doi.org/10.25500/edata.bham.00000395.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Jacek Majewski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Majewski, A.J., Slater, P.R. & Steinberger-Wilckens, R. Understanding the effect of water transport on the thermal expansion properties of the perovskites BaFe0.6Co0.3Nb0.1O3−δ and BaCo0.7Yb0.2Bi0.1O3−δ. J Mater Sci 55, 13590–13604 (2020). https://doi.org/10.1007/s10853-020-04994-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04994-9