Skip to main content

Advertisement

Log in

Electrospun membranes of low molecular weight di-stereoblock poly(lactic acid)s with high thermal stability and solvent resistance via low temperature sintering

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrospinning is a highly efficient mild method to obtain stereocomplex poly(lactic acid) fibers from blends of high molecular weight (MW) poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA). However, high MW PLAs are expensive and proved difficult to avoid homocrystallites which weaken the performances. Here, di-stereoblock poly(lactic acid)s (di-sb-PLAs) with low MW of 104 g mol−1 were synthesized and electrospun into membranes. The stereocomplex (sc) crystallites were induced by sintering the amorphous as-spun membranes at 200 °C, and further improved by applying 1 MPa pressure which promoted the segment migration across fiber intersections and welded the fibers by forming new sc crystallites. Due to more readily crystallize at molecular level than the blend of PLLA and PDLA, the sintered di-sb-PLA membranes exhibited higher thermal stability, better tensile strength, and were more stable during multiple cycles of selective separating solvent and water mixtures. Increasing MW of di-sb-PLA positively affected the membrane properties and inhibited dramatical embrittlement that occurred in sintered membrane of PLLA and PDLA blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Sharma R, Jafari SM, Sharma S (2020) Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control 112:107086

    CAS  Google Scholar 

  2. Kuan C, Chiang C, Shen M, Kuan H (2020) The study on coffee biomass composite materials and their application on green golf grip. Mod Phys Lett B 34:2040009

    CAS  Google Scholar 

  3. Wang X, Pan Y, Yuan H, Su M, Shao C, Liu C, Guo Z, Shen C, Liu X (2020) Simple fabrication of superhydrophobic PLA with honeycomb-like structures for high-efficiency oil-water separation. Chin Chem Lett 31:365–368

    CAS  Google Scholar 

  4. Cacciotti I, Pallotto F, Scognamiglio V, Moscone D, Arduini F (2020) Reusable optical multi-plate sensing system for pesticide detection by using electrospun membranes as smart support for acetylcholinesterase immobilisation. Mater SciEng C Mater Biol Appl 111:110744

    CAS  Google Scholar 

  5. Cacciotti I, Mori S, Cherubini V, Nanni F (2018) Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging. Int J Biol Macromol 112:567–575

    CAS  Google Scholar 

  6. Cacciotti I, Ciocci M, Di Giovanni E, Nanni F, Melino S (2018) Hydrogen sulfide-releasing fibrous membranes: potential patches for stimulating human stem cells proliferation and viability under oxidative stress. Int J Mol Sci 19:2368

    Google Scholar 

  7. Cacciotti I, Chronopoulou L, Palocci C, Amalfitano A, Cantiani M, Cordaro M, Lajolo C, Calla C, Boninsegna A, Lucchetti D, Gallenzi P, Sgambato A, Nocca G, Arcovito A (2018) Controlled release of 18-beta-glycyrrhetic acid by nanodelivery systems increases cytotoxicity on oral carcinoma cell line. Nanotechnology 29:285101

    Google Scholar 

  8. Speranza V, De Meo A, Pantani R (2014) Thermal and hydrolytic degradation kinetics of PLA in the molten state. Polym Degrad Stab 100:37–41

    CAS  Google Scholar 

  9. Andersson SR, Hakkarainen M, Albertsson AC (2012) Long-term properties and migration of low molecular mass compounds from modified PLLA materials during accelerated ageing. Polym Degrad Stab 97:914–920

    CAS  Google Scholar 

  10. Han LL, Xie Q, Bao JN, Shan GR, Bao YZ, Pan PJ (2017) Click chemistry synthesis, stereocomplex formation, and enhanced thermal properties of well-defined poly(L-lactic acid)-b-poly(D-lactic acid) stereo diblock copolymers. Polym Chem 8:1006–1016

    CAS  Google Scholar 

  11. Hirata M, Kimura Y (2008) Thermomechanical properties of stereoblock poly(lactic acid)s with different PLLA/PDLA block compositions. Polymer 49:2656–2661

    CAS  Google Scholar 

  12. Tsuji H, Ikada Y (1992) Stereocomplex formation between enantiomeric poly(lactic acid)s. 6. Binary blends from copolymers. Macromolecules 25:5719–5723

    CAS  Google Scholar 

  13. Yui N, Dijkstra PJ, Feijen J (1990) Stereo block copolymers of L- and D-lactides. Macromol Chem Phys 191:481–488

    CAS  Google Scholar 

  14. Brizzolara D, Cantow H, Diederichs K, Keller E, Domb AJ (1996) Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s. Macromolecules 29:191–197

    CAS  Google Scholar 

  15. Schmidt SC, Hillmyer MA (2001) Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J Polym Sci Pt B Polym Phys 39:300–313

    CAS  Google Scholar 

  16. Chen JY, Su CY, Hsu CH, Zhang YH, Zhang QC, Chang CL, Hua CC, Chen WC (2019) Solvent effects on morphology and electrical properties of poly(3-hexylthiophene) electrospun nanofibers. Polymers 11:1501

    CAS  Google Scholar 

  17. Sun C, Cagri Ayranci, Chen Y, Boluk Y (2017) Can extensional flow rupture macromolecules in an electrospinning process? J Polym Sci Pt B Polym Phys 55:1051–1054

    CAS  Google Scholar 

  18. Zhang X, Nakagawa R, Chan KHK, Kotaki M (2012) Mechanical property enhancement of polylactide nanofibers through optimization of molecular weight, electrospinning conditions, and stereocomplexation. Macromolecules 45:5494–5500

    CAS  Google Scholar 

  19. Tsuji H, Nakano M, Hashimoto M, Takashima K, Katsura S, Mizuno A (2006) Electrospinning of Poly(lactic acid) Stereocomplex Nanofibers. Biomacromol 7:3316–3320

    CAS  Google Scholar 

  20. Furuhashi Y, Kimura Y, Yoshie N, Yamane H (2006) Higher-order structures and mechanical properties of stereocomplex-type poly(lactic acid) melt spun fibers. Polymer 47:5965–5972

    CAS  Google Scholar 

  21. Furuhashi Y, Kimura Y, Yoshie N (2006) Self-assembly of stereocomplex-type poly(lactic acid). Polym J 38:1061–1067

    CAS  Google Scholar 

  22. Li L, Hashaikeh R, Arafat HA (2013) Development of eco-efficient micro-porous membranes via electrospinning and annealing of poly (lactic acid). J Memb Sci 436:57–67

    CAS  Google Scholar 

  23. Liu HL, Bai DY, Bai HW, Zhang Q, Fu Q (2015) Constructing stereocomplex structures at the interface for remarkably accelerating matrix crystallization and enhancing the mechanical properties of poly(L-lactide)/multi-walled carbon nanotube nanocomposites. J Mater Chem A 3:13835–13847

    CAS  Google Scholar 

  24. Jing Y, Zhang L, Huang R, Bai D, Bai H, Zhang Q, Fu Q (2017) Ultrahigh-performance electrospun polylactide membranes with excellent oil/water separation ability via interfacial stereocomplex crystallization. J Mater Chem A 5:19729–19737

    CAS  Google Scholar 

  25. Tsuji H, Hyon S, Ikada Y (1991) Stereocomplex formation between enantiomeric poly(lactic acid)s. 3. Calorimetric studies on blend films cast from dilute solution. Macromolecules 24:5651–5656

    CAS  Google Scholar 

  26. Pan PJ, Han LL, Bao JN, Xie Q, Shan GR, Bao YZ (2015) Competitive Stereocomplexation, Homocrystallization, and Polymorphic Crystalline Transition in Poly(L-lactic acid)/Poly(D-lactic acid) Racemic Blends: molecular Weight Effects. J Phys Chem B 119:6462–6470

    CAS  Google Scholar 

  27. Masutani K, Kobayashi K, Kimura Y, Lee CW (2018) Properties of stereo multi-block polylactides obtained by chain-extension of stereo tri-block polylactides consisting of poly(L-lactide) and poly(D-lactide). J Polym Res 25:74

    Google Scholar 

  28. Widhianto YW, Yamamoto M, Masutani K, Kimura Y, Yamane H (2017) Effect of the block length and the molecular weight on the isothermal crystallization behavior of multi-stereoblock poly(lactic-acid)s. Polym Degrad Stab 142:178–187

    CAS  Google Scholar 

  29. Tsuji H, Ikada Y (1999) Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films. Polymer 40:6699–6708

    CAS  Google Scholar 

  30. Hirata M, Kobayashi K, Kimura Y (2010) Synthesis and properties of high-molecular-weight stereo di-block polylactides with nonequivalent D/L ratios. J Polym Sci A 48:794–801

    CAS  Google Scholar 

  31. Tsuji H, Wada T, Sakamoto Y, Sugiura Y (2010) Stereocomplex crystallization and spherulite growth behavior of poly(L-lactide)-b-poly(D-lactide) stereodiblock copolymers. Polymer 51:4937–4947

    CAS  Google Scholar 

  32. Han LL, Shan GR, Bao YZ, Pan PJ (2015) Exclusive stereocomplex crystallization of linear and multiarm star-shaped high-molecular-weight stereo diblock poly(lactic acid)s. J Phys Chem B 119:14270–14279

    CAS  Google Scholar 

  33. Widhianto YW, Yamamoto M, Masutani K, Kimura Y, Yamane H (2017) Thermal properties of the multi-stereo block poly(lactic acid)s with various block lengths. Polym Degrad Stab 142:188–197

    CAS  Google Scholar 

  34. Li Y, Li Q, Yang G, Ming R, Yu M, Zhang H, Shao H (2018) Evaluation of thermal resistance and mechanical properties of injected molded stereocomplex of poly(l-lactic acid) and poly(d-lactic acid) with various molecular weights. Adv Polym Tech 37:1674–1681

    CAS  Google Scholar 

  35. Gazzano M, Gualandi C, Zucchelli A, Sui T, Korsunsky AM, Reinhard C, Focarete ML (2015) Structure-morphology correlation in electrospun fibers of semicrystalline polymers by simultaneous synchrotron SAXS-WAXD. Polymer 63:154–163

    CAS  Google Scholar 

  36. Huang C, Thomas NL (2018) Fabricating porous poly(lactic acid) fibres via electrospinning. Eur Polym J 99:464–476

    CAS  Google Scholar 

  37. Chen H-C, Tsai C-H, Yang M-C (2011) Mechanical properties and biocompatibility of electrospun polylactide/poly(vinylidene fluoride) mats. J Polym Res 18:319–327

    CAS  Google Scholar 

  38. Zhang X, Shi F, Niu J, Jiang Y, Wang Z (2008) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18:621–633

    CAS  Google Scholar 

  39. Wei XF, Bao RY, Cao ZQ, Yang W, Xie BH, Yang MB (2014) Stereocomplex crystallite network in asymmetric PLLA/PDLA Blends: formation, structure, and confining effect on the crystallization rate of homocrystallites. Macromolecules 47:1439–1448

    CAS  Google Scholar 

  40. Yang B, Wang R, Ma H, Li X, Brunig H, Dong Z, Qi Y, Zhang X (2018) Structure Mediation and Properties of Poly(l-lactide)/Poly(d-lactide) Blend Fibers. Polymers 10:1353

    Google Scholar 

  41. Cacciotti I, House JN, Mazzuca C, Valentini M, Madau F, Palleschi A, Straffi P, Nanni F (2015) Neat and GNPs loaded natural rubber fibers by electrospinning: manufacturing and characterization. Mater Des 88:1109–1118

    CAS  Google Scholar 

  42. Zhang P, Tian R, Na B, Lv R, Liu Q (2015) Intermolecular ordering as the precursor for stereocomplex formation in the electrospun polylactide fibers. Polymer 60:221–227

    CAS  Google Scholar 

  43. Arias V, Odelius K, Hoglund A, Albertsson AC (2015) Homocomposites of polylactide (PLA) with induced interfacial stereocomplex crystallites. ACS Sustain Chem Eng 3:2220–2231

    CAS  Google Scholar 

  44. Cam D, Marucci M (1997) Influence of residual monomers and metals on poly (l-lactide) thermal stability. Polymer 38:1879–1884

    CAS  Google Scholar 

  45. Tsuji H, Fukui I (2003) Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer 44:2891–2896

    CAS  Google Scholar 

  46. Bianco A, Calderone M, Cacciotti I (2013) Electrospun PHBV/PEO co-solution blends: microstructure, thermal and mechanical properties. Mater Sci Eng C 33:1067–1077

    CAS  Google Scholar 

  47. Cacciotti I, Calderone M, Bianco A (2013) Tailoring the properties of electrospun PHBV mats: co-solution blending and selective removal of PEO. Eur Polym J 49:3210–3222

    CAS  Google Scholar 

  48. Cacciotti I, Fortunati E, Puglia D, Kenny JM, Nanni F (2014) Effect of silver nanoparticles and cellulose nanocrystals on electrospun poly(lactic) acid mats: morphology, thermal properties and mechanical behavior. Carbohydr Polym 103:22–31

    CAS  Google Scholar 

  49. Zhang X, Geven MA, Grijpma DW, Gautrot JE, Peijs T (2016) Polymer-polymer composites for the design of strong and tough degradable biomaterials. Mater Today Commun 8:53–63

    CAS  Google Scholar 

  50. Monticelli O, Putti M, Gardella L, Cavallo D, Basso A, Prato M, Nitti S (2014) New Stereocomplex PLA-Based Fibers: effect of POSS on Polymer Functionalization and Properties. Macromolecules 47:4718–4727

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (2017YFB0309301, 2017YFB0309302) and the Natural Science Foundation of Shanghai, China (17ZR1407200).

Author information

Authors and Affiliations

Authors

Contributions

TC: Project administration, Validation, Writing-review and editing, Supervision. MX: Investigation, Formal analysis, Writing - original draft. LZ Conceptualization, Validation, Writing-review and editing. LW: Resources, Conceptualization. YQ: Methodology, Formal analysis.

Corresponding author

Correspondence to Tao Chen.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 6002 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Xu, M., Zhao, L. et al. Electrospun membranes of low molecular weight di-stereoblock poly(lactic acid)s with high thermal stability and solvent resistance via low temperature sintering. J Mater Sci 55, 13472–13486 (2020). https://doi.org/10.1007/s10853-020-04987-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04987-8