Skip to main content

pH dependence of CO2 electroreduction selectivity over size-selected Au nanoparticles

Abstract

Electrocatalytic CO2 reduction to liquid fuels and chemical feedstock, powered by renewable electricity, is an important approach for storing renewable energy and closing carbon cycle. Here, we study the pH effect on CO2 electroreduction selectivity over size-selected Au nanoparticles (NPs) in citrate buffer solutions with pH 3.7–6.0. A maximum CO Faradaic efficiency of 96.3% is achieved over Au NPs at pH 6.0, and synthesis gas with tunable H2/CO ratios (0.04–22) can be produced in the studied pH range. By careful kinetic analysis, the observed pH dependence reveals a most likely mixed mechanism of concerted proton–electron transfer and sequential electron–proton transfer in the initial step of CO2 activation. The pH-dependent selectivity changes over Au NPs can be rationalized by the difference in the pH dependence of CO2 electroreduction and concurrent hydrogen evolution reaction. This work provides new guidelines into controlling activity and selectivity of CO2 electroreduction via efficiently tuning electrolyte pH.

Graphic abstract

Selectivity of CO2 electroreduction over size-selected Au nanoparticles is tuned via electrolyte pH.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1

    Tackett BM, Gomez E, Chen JG (2019) Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat Catal 2:381–386

    CAS  Google Scholar 

  2. 2

    Kondratenko EV, Mul G, Baltrusaitis J, Larrazabal GO, Perez-Ramirez J (2013) Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ Sci 6:3112–3135

    CAS  Google Scholar 

  3. 3

    Zhu WJ, Zhang L, Yang PP et al (2018) Low-coordinated edge sites on ultrathin palladium nanosheets boost carbon dioxide electroreduction performance. Angew Chem Int Ed 36:11718–11722

    Google Scholar 

  4. 4

    Gao DF, Cai F, Wang GX, Bao XH (2017) Nanostructured heterogeneous catalysts for electrochemical reduction of CO2. Curr Opin Green Sustain Chem 3:39–44

    Google Scholar 

  5. 5

    Huang HW, Jia HH, Liu Z et al (2017) Understanding of strain effect in electrochemical reduction of CO2 using Pd nanostructures as an ideal platform. Angew Chem Int Ed 56:3594–3598

    CAS  Google Scholar 

  6. 6

    Jiang XL, Li HB, Xiao JP et al (2018) Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(II) center in ZIFs. Nano Energy 52:345–350

    CAS  Google Scholar 

  7. 7

    Guo LM, Cao JQ, Zhang JM, Hao YA, Bi K (2019) Photoelectrochemical CO2 reduction by Cu2O/Cu2S hybrid catalyst immobilized in TiO2 nanocavity arrays. J Mater Sci 54:10379–10388. https://doi.org/10.1007/s10853-019-03615-4

    CAS  Article  Google Scholar 

  8. 8

    Zhu WL, Michalsky R, Metin O et al (2013) Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc 135:16833–16836

    CAS  Google Scholar 

  9. 9

    Zhu WW, Zhao KM, Liu SQ et al (2019) Low-overpotential selective reduction of CO2 to ethanol on electrodeposited CuxAuy nanowire arrays. J. Energy Chem 37:176–182

    Google Scholar 

  10. 10

    Zhao K, Liu YM, Quan X, Chen S, Yu HT (2017) CO2 electroreduction at low overpotential on oxide-derived Cu/carbons fabricated from metal organic framework. ACS Appl Mater Int 9:5302–5311

    CAS  Google Scholar 

  11. 11

    Yang HB, Hung SF, Liu S et al (2018) Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat Energy 3:140–147

    CAS  Google Scholar 

  12. 12

    Yan CC, Li HB, Ye YF et al (2018) Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ Sci 11:1204–1210

    CAS  Google Scholar 

  13. 13

    Therrien JA, Wolf MO, Patrick BO (2014) Electrocatalytic reduction of CO2 with palladium bis-N-heterocyclic carbene pincer complexes. Inorg Chem 53:12962–12972

    CAS  Google Scholar 

  14. 14

    Sebastián-Pascual P, Mezzavilla S, Stephens IEL, Escudero-Escribano M (2019) Structure-sensitivity and electrolyte effects in CO2 electroreduction: from model studies to applications. ChemCatChem 11:3626–3645

    Google Scholar 

  15. 15

    Li TF, Yang C, Luo JL, Zheng GF (2019) Electrolyte driven highly selective CO2 electroreduction at low overpotentials. ACS Catal 9:10440–10447

    CAS  Google Scholar 

  16. 16

    Zhu SQ, Jiang B, Cai WB, Shao MH (2017) Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J Am Chem Soc 139:15664–15667

    CAS  Google Scholar 

  17. 17

    Aran-Ais RM, Gao DF, Roldan Cuenya B (2018) Structure- and electrolyte-sensitivity in CO2 electroreduction. Acc Chem Res 51:2906–2917

    CAS  Google Scholar 

  18. 18

    Koper MTM (2013) Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem Sci 4:2710–2723

    CAS  Google Scholar 

  19. 19

    Schouten KJP, Gallent EP, Koper MTM (2014) The influence of pH on the reduction of CO and to hydrocarbons on copper electrodes. J Electroanal Chem 716:53–57

    CAS  Google Scholar 

  20. 20

    Huynh MHV, Meyer TJ (2007) Proton-coupled electron transfer. Chem Rev 107:5004–5064

    CAS  Google Scholar 

  21. 21

    Warren JJ, Tronic TA, Mayer JM (2010) Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem Rev 110:6961–7001

    CAS  Google Scholar 

  22. 22

    Hori Y, Takahashi R, Yoshinami Y, Murata A (1997) Electrochemical reduction of CO at a copper electrode. J Phys Chem B 101:7075–7081

    CAS  Google Scholar 

  23. 23

    Kim B, Ma SC, Jhong HRM, Kenis PJA (2015) Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer. Electrochim Acta 166:271–276

    CAS  Google Scholar 

  24. 24

    Gao DF, Wang J, Wu HH et al (2015) pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles. Electrochem Commun 55:1–5

    Google Scholar 

  25. 25

    Wang L, Nitopi SA, Bertheussen E et al (2018) Electrochemical carbon monoxide reduction on polycrystalline copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal 8:7445–7454

    CAS  Google Scholar 

  26. 26

    Bumroongsakulsawat P, Kelsall GH (2014) Effect of solution pH on CO: formate formation rates during electrochemical reduction of aqueous CO2 at Sn cathodes. Electrochim Acta 141:216–225

    CAS  Google Scholar 

  27. 27

    Varela AS, Kroschel M, Reier T, Strasser P (2016) Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal Today 260:8–13

    CAS  Google Scholar 

  28. 28

    Raciti D, Mao M, Park JH, Wang C (2018) Mass transfer effects in CO2 reduction on Cu nanowire electrocatalysts. J Electrochem Soc 165:F799–F804

    CAS  Google Scholar 

  29. 29

    Kas R, Kortlever R, Yılmaz H, Koper MTM, Mul G (2015) Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. ChemElectroChem 2:354–358

    CAS  Google Scholar 

  30. 30

    Gupta N, Gattrell M, MacDougall B (2006) Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J Appl Electrochem 36:161–172

    CAS  Google Scholar 

  31. 31

    Ramdin M, Morrison ART, de Groen M et al (2019) High pressure electrochemical reduction of CO2 to formic acid/formate: a comparison between bipolar membranes and cation exchange membranes. Ind Eng Chem Res 58:1834–1847

    CAS  Google Scholar 

  32. 32

    Todorova TK, Schreiber MW, Fontecave M (2020) Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal 10:1754–1768

    CAS  Google Scholar 

  33. 33

    Varela AS, Kroschel M, Leonard ND et al (2018) pH effects on the selectivity of the electrocatalytic CO2 reduction on graphene-embedded Fe-N-C motifs: bridging concepts between molecular homogeneous and solid-state heterogeneous catalysis. ACS Energy Lett 3:812–817

    CAS  Google Scholar 

  34. 34

    Li J, Wu DH, Malkani AS et al (2020) Hydroxide is not a promoter of C2+ product formation in the electrochemical reduction of CO on copper. Angew Chem Int Ed 59:4464–4469

    CAS  Google Scholar 

  35. 35

    Klingan K, Kottakkat T, Jovanov ZP et al (2018) Reactivity determinants in electrodeposited Cu foams for electrochemical CO2 reduction. Chemsuschem 11:3449–3459

    CAS  Google Scholar 

  36. 36

    Ayemoba O, Cuesta A (2017) Spectroscopic evidence of size-dependent buffering of interfacial pH by cation hydrolysis during CO2 electroreduction. ACS Appl Mater Interfaces 9:27377–27381

    CAS  Google Scholar 

  37. 37

    Zhang F, Co AC (2020) Direct evidence of local pH change and the role of alkali cation during CO2 electroreduction in aqueous media. Angew Chem Int Ed 59:1674–1679

    CAS  Google Scholar 

  38. 38

    Kim B, Seong H, Song JT et al (2020) Over a 15.9% Solar-to-CO conversion from dilute CO2 streams catalyzed by gold nanoclusters exhibiting a high CO2 binding affinity. ACS Energy Lett 5:749–757

    CAS  Google Scholar 

  39. 39

    Singh MR, Kwon YK, Lum YW, Ager JW, Bell AT (2016) Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J Am Chem Soc 138:13006–13012

    CAS  Google Scholar 

  40. 40

    Gao DF, Zhang Y, Zhou Z et al (2017) Enhancing CO2 electroreduction with the metal-oxide interface. J Am Chem Soc 139:5652–5655

    CAS  Google Scholar 

  41. 41

    Mistry H, Reske R, Zeng ZH et al (2014) Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc 136:16473–16476

    CAS  Google Scholar 

  42. 42

    Wuttig A, Yaguchi M, Motobayashi K, Osawa M, Surendranath Y (2016) Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. PNAS 113:E4585–E4593

    CAS  Google Scholar 

  43. 43

    Chen YH, Li CW, Kanan MW (2012) Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc 134:19969–19972

    CAS  Google Scholar 

  44. 44

    Mariano RG, McKelvey K, White HS, Kanan MW (2017) Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358:1187–1192

    CAS  Google Scholar 

  45. 45

    Chatterjee D, Shetty S, Müller-Caspary K et al (2018) Ultrathin Au-alloy nanowires at the liquid-liquid interface. Nano Lett 18:1903–1907

    CAS  Google Scholar 

  46. 46

    Chen HY, Li Y, Zhang FB, Zhang GL, Fan XB (2011) Graphene supported Au-Pd bimetallic nanoparticles with core-shell structures and superior peroxidase-like activities. J Mater Chem 21:17658–17661

    CAS  Google Scholar 

  47. 47

    Behrens M, Studt F, Kasatkin I et al (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893–897

    CAS  Google Scholar 

  48. 48

    Jiao F, Li JL, Pan XL et al (2016) Selective conversion of syngas to light olefins. Science 351:1065–1068

    CAS  Google Scholar 

  49. 49

    Lee JH, Kattel S, Jiang Z et al (2019) Tuning the activity and selectivity of electroreduction of CO2 to synthesis gas using bimetallic catalysts. Nat Commun 10:3724

    Google Scholar 

  50. 50

    Kortlever R, Shen J, Schouten KJ, Calle-Vallejo F, Koper MT (2015) Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J Phys Chem Lett 6:4073–4082

    CAS  Google Scholar 

  51. 51

    Chandrasekaran K, Bockris LOM (1987) In-situ spectroscopic investigation of adsorbed intermediate radicals in electrochemical reactions: CO2 on platinum. Surf Sci 185:495–514

    CAS  Google Scholar 

  52. 52

    Bhargava SS, Proietto F, Azmoodeh D et al (2020) System design rules for intensifying the electrochemical reduction of CO2 to CO on Ag nanoparticles. ChemElectroChem 7:2001–2011

    CAS  Google Scholar 

  53. 53

    Firet NJ, Smith WA (2017) Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal 7:606–612

    CAS  Google Scholar 

  54. 54

    Durst J, Siebel A, Simon C et al (2014) New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci 7:2255–2260

    CAS  Google Scholar 

  55. 55

    Sheng WC, Zhuang ZB, Gao MR et al (2015) Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat Commun 6:5848

    CAS  Google Scholar 

  56. 56

    Bagger A, Ju W, Varela AS, Strasser P, Rossmeisl J (2017) Electrochemical CO2 reduction: a classification problem. ChemPhysChem 18:3266–3273

    CAS  Google Scholar 

  57. 57

    Zhang YJ, Sethuraman V, Michalsky R, Peterson AA (2014) Competition between CO2 reduction and H2 evolution on transition metal electrocatalysts. ACS Catal 4:3742–3748

    CAS  Google Scholar 

  58. 58

    Goyal A, Marcandalli G, Mints VA, Koper MTM (2020) Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. J Am Chem Soc 142:4154–4161

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Fundamental Research Funds for the Central Universities (No. 2019NQN13) and the DNL Cooperation Fund, CAS (Grant DNL201924). We thank Prof. Guoxiong Wang at the DICP for fruitful discussions.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiaole Jiang or Dunfeng Gao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 122 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Li, H., Yang, Y. et al. pH dependence of CO2 electroreduction selectivity over size-selected Au nanoparticles. J Mater Sci 55, 13916–13926 (2020). https://doi.org/10.1007/s10853-020-04983-y

Download citation