Skip to main content

Formation of nanosized Gd(III) coordination networks with tripodal amine-N-oxide type ligand through microemulsions to achieve high relaxivity and exceptional stability for MRI applications

Abstract

Gadolinium(III) complexes, such as Gd-DTPA (Magnevist®) and Gd-DOTA (Dotarem®), are widely used as magnetic resonance imaging (MRI) contrast agents (CAs) in clinical practice. Both high relaxivity and stability are crucial requirements for Gd(III)-based materials to be used as MRI-CAs. The relaxivity is generally improved by increasing the hydration number (q) and/or embedding Gd(III) complexes in/onto slow rotating objects, while the coordination stability can be enhanced when nitrogen donors are replaced with oxygen donors according to the hard-soft-acid-base (HSAB) principle. In this work, we synthesized a tripodal hexadentate all-oxygen-donor ligand bearing three pairs of carboxylate and amine-N-oxide chelating groups and used microemulsion technique to further form nanosized coordination networks. The obtained Gd(III)-containing nanoparticles exhibited a narrow size distribution centered at 90 nm according to dynamic laser scattering and transmission electron microscopy analysis. The relaxivity of the nanoparticles reached 25.95 s−1 per mM of Gd(III), about six times higher than that of the commercial MRI-CAs. The competing coordination experiments showed that Gd(III) ions were firmly bonded in the coordination networks, complying well with the safety requirement for clinical applications. Moreover, the nanoparticles had low cytotoxicity and displayed good biocompatibility for potential in vivo applications.

This is a preview of subscription content, access via your institution.

Scheme 1
Figure 1
Figure 2
Figure 3

References

  1. Wallyn J, Anton N, Akram S, Vandamme TF (2019) Biomedical imaging: principles, technologies, clinical aspects, contrast agents, limitations and future trends in nanomedicines pharm. Res 36:78. https://doi.org/10.1007/s11095-019-2608-5

    CAS  Article  Google Scholar 

  2. Akakuru OU, Iqbal MZ, Saeed M et al (2019) The transition from metal-based to metal-free contrast agents for T1 magnetic resonance imaging enhancement. Bioconjugate Chem 30:2264–2286. https://doi.org/10.1021/acs.bioconjchem.9b00499

    CAS  Article  Google Scholar 

  3. Bottrill M, Kwok L, Long N (2006) Lanthanoids in magnetic resonance imaging. Chem Soc Rev 35:557–571. https://doi.org/10.1039/b516376p

    CAS  Article  Google Scholar 

  4. Datta A, Raymond KN (2009) Gd-hydroxypyridinone (HOPO)-based high-relaxivity magnetic resonance imaging (MRI) contrast agents. Acc Chem Res 42:938–947

    CAS  Article  Google Scholar 

  5. Raymond KN, Pierre VC (2005) Next generation, high relaxivity gadolinium MRI agents. Bioconjugate Chem 16:3–8. https://doi.org/10.1021/bc049817y

    CAS  Article  Google Scholar 

  6. Wahsner J, Gale EM, Rodriguez-Rodriguez A, Caravan P (2019) Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev 119:957–1057. https://doi.org/10.1021/acs.chemrev.8b00363

    CAS  Article  Google Scholar 

  7. Villaraza AJL, Bumb A, Brechbiel MW (2010) Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 110:2921–2959. https://doi.org/10.1021/Cr900232t

    CAS  Article  Google Scholar 

  8. Zhang B, Cheng L, Duan B et al (2019) Gadolinium complexes of diethylenetriamine-N-oxide pentaacetic acid-bisamide: a new class of highly stable MRI contrast agents with a hydration number of 3. Dalton Trans 48:1693–1699. https://doi.org/10.1039/C8DT04478C

    CAS  Article  Google Scholar 

  9. Hermann P, Kotek J, Kubicek V, Lukes I (2008) Gadolinium(III) complexes as MRI contrast agents: ligand design and properties of the complexes. Dalton Trans. https://doi.org/10.1039/b719704g

    Article  Google Scholar 

  10. Aime S, Calabi L, Cavallotti C et al (2004) [Gd-AAZTA]-: a new structural entry for an improved generation of MRI contrast agents. Inorg Chem 43:7588–7590. https://doi.org/10.1021/ic0489692

    CAS  Article  Google Scholar 

  11. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352. https://doi.org/10.1021/cr980440x

    CAS  Article  Google Scholar 

  12. Chan K, Wong W-T (2007) Small molecular gadolinium(III) complexes as MRI contrast agents for diagnostic imaging. Coord Chem Rev 251:2428–2451. https://doi.org/10.1016/j.ccr.2007.04.018

    CAS  Article  Google Scholar 

  13. Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512–523

    CAS  Article  Google Scholar 

  14. Chen Y, Zhu Q, Cui X et al (2014) Preparation of highly efficient MRI contrast agents through complexation of cationic GdIII-containing metallosurfactant with biocompatible polyelectrolytes. Chem Eur J 20:12477–12482. https://doi.org/10.1002/chem.201402530

    CAS  Article  Google Scholar 

  15. Martinelli J, Thangavel K, Tei L, Botta M (2014) Dendrimeric beta-cyclodextrin/Gd(III) chelate supramolecular host-guest adducts as high-relaxivity MRI probes. Chem Eur J 20:10944–10952. https://doi.org/10.1002/chem.201402418

    CAS  Article  Google Scholar 

  16. Xiong R, Cheng L, Tian Y et al (2016) Hyperbranched polyethylenimine based polyamine-N-oxide-carboxylate chelates of gadolinium for high relaxivity MRI contrast agents. RSC Adv 6:28063–28068

    CAS  Article  Google Scholar 

  17. Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185

    CAS  Article  Google Scholar 

  18. Fedorenko S, Bespalova S, Mustafina A et al (2016) Tuning the non-covalent confinement of Gd(III) complexes in silica nanoparticles for high T1-weighted MR imaging capability. Colloids Surf B. https://doi.org/10.1016/j.colsurfb.2016.10.025

    Article  Google Scholar 

  19. W Lin, W Rieter, K Taylor-Pashow (2009) Modular synthesis of functional nanoscale coordination polymers. Angewandte Chemie (International ed. in English) 48: 650–658. https://doi.org/10.1002/anie.200803387

  20. Catala L, Volatron F, Brinzei D, Mallah T (2009) Functional coordination nanoparticles. Inorg Chem 48:3360–3370. https://doi.org/10.1021/ic8012574

    CAS  Article  Google Scholar 

  21. Spokoyny AM, Kim D, Sumrein A, Mirkin CA (2009) Infinite coordination polymer nano- and microparticle structures. Chem Soc Rev 38:1218–1227. https://doi.org/10.1039/b807085g

    CAS  Article  Google Scholar 

  22. Rocca J, Liu D, Lin W (2011) Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44:957–968. https://doi.org/10.1021/ar200028a

    CAS  Article  Google Scholar 

  23. He C, Liu D, Lin W (2015) Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal-organic frameworks and nanoscale coordination. Polymers Chem Rev 115:11079–11108. https://doi.org/10.1021/acs.chemrev.5b00125

    CAS  Article  Google Scholar 

  24. Rowe M, Chang C-C, Thamm D et al (2009) Tuning the magnetic resonance imaging properties of positive contrast agent nanoparticles by surface modification with RAFT polymers. Langmuir 25:9487–9499. https://doi.org/10.1021/la900730b

    CAS  Article  Google Scholar 

  25. Rowe M, Thamm D, Kraft S, Boyes S (2009) Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromol 10:983–993. https://doi.org/10.1021/bm900043e

    CAS  Article  Google Scholar 

  26. Rieter WJ, Taylor KML, An HY, Lin WL, Lin WB (2006) Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc 128:9024–9025. https://doi.org/10.1021/Ja0627444

    CAS  Article  Google Scholar 

  27. Dong X, Ding YX, Wu P, Wang CC, Schafer CG (2017) Preparation of MRI-visible gadolinium methacrylate nanoparticles with low cytotoxicity and high magnetic relaxivity. J Mater Sci 52:7625–7636. https://doi.org/10.1007/s10853-017-1070-1

    CAS  Article  Google Scholar 

  28. Barker-Griffith A, Goldberg J, Abraham J (2011) Ocular pathologic features and gadolinium deposition in nephrogenic systemic fibrosis. Arch Ophthalmol 129:661–663. https://doi.org/10.1001/archophthalmol.2011.89

    Article  Google Scholar 

  29. Cowper S, Kuo P, Bucala R (2007) Nephrogenic systemic fibrosis and gadolinium exposure: association and lessons for idiopathic fibrosing disorders. Arthritis Rheum 56:3173–3175. https://doi.org/10.1002/art.22926

    CAS  Article  Google Scholar 

  30. Cowper S (2008) Gadolinium—is it to blame? J Cutan Pathol 35:520–522. https://doi.org/10.1111/j.1600-0560.2008.01027.x

    Article  Google Scholar 

  31. Wollanka H, Weidenmaier W, Giersig C (2009) NSF after Gadovist exposure: a case report and hypothesis of NSF development. Nephrol Dial Transplant 24:3882–3884. https://doi.org/10.1093/ndt/gfp494

    Article  Google Scholar 

  32. Ayers PW, Parr RG, Pearson RG (2006) Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J Chem Phys 124:194107. https://doi.org/10.1063/1.2196882

    CAS  Article  Google Scholar 

  33. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539. https://doi.org/10.1021/ja00905a001

    CAS  Article  Google Scholar 

  34. Liu X, Lin L, Feng X (2011) Chiral N,N′-Dioxides: new ligands and organocatalysts for catalytic asymmetric reactions. Acc Chem Res 44:574–587. https://doi.org/10.1021/ar200015s

    CAS  Article  Google Scholar 

  35. Gao B, Wen Y, Yang Z, Huang X, Liu X, Feng X (2008) Asymmetric ring opening of meso-epoxides with aromatic amines catalyzed by a new proline-based N,N′-dioxide-indium Tris(triflate) complex. Adv Synth Catal 350:385–390. https://doi.org/10.1002/adsc.200700474

    CAS  Article  Google Scholar 

  36. Liu X, Lin L, Feng X (2009) Amide-based bifunctional organocatalysts in asymmetric reactions. Chem Commun. https://doi.org/10.1039/B913411E

    Article  Google Scholar 

  37. Shang D, Liu Y, Zhou X, Liu X, Feng X (2009) A N, N′-dioxide–copper(II) complex as an efficient catalyst for the enantioselective and diastereoselective mannich-type reaction of Glycine Schiff bases with aldimines. Chem Eur J 15:3678–3681. https://doi.org/10.1002/chem.200900118

    CAS  Article  Google Scholar 

  38. Martins AF, Eliseeva SV, Carvalho HF et al (2014) A bis(pyridine N-oxide) analogue of DOTA: relaxometric properties of the Gd(III) complex and efficient sensitization of visible and NIR-emitting lanthanide(III) cations including Pr(III) and Ho(III). Chem Eur J 20:14834–14845. https://doi.org/10.1002/chem.201403856

    CAS  Article  Google Scholar 

  39. Zadmard R, Schrader T, Grawe T, Kraft A (2002) Self-assembly of molecular capsules in polar solvents. Org Lett 4:1687–1690. https://doi.org/10.1021/ol0257631

    CAS  Article  Google Scholar 

  40. Mastalerz M, Lauer J, Zhang W-S, Rominger F, Schröder R (2017) Shape-persistent [4+4] imine cages with a truncated tetrahedral geometry. Chem Eur J. https://doi.org/10.1002/chem.201705713

    Article  Google Scholar 

  41. Bellin M-F, van der Molen A (2008) Extracellular gadolinium-based contrast media: an overview. Eur J Radiol 66:160–167. https://doi.org/10.1016/j.ejrad.2008.01.023

    Article  Google Scholar 

  42. Laurent S, Elst LV, Muller RN (2006) Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Media Mol Imaging 1:128–137

    CAS  Article  Google Scholar 

  43. Nimesh S, Kumar R, Chandra R (2006) Novel polyallylamine–dextran sulfate–DNA nanoplexes: highly efficient non-viral vector for gene delivery. Int J Pharm 320:143–149. https://doi.org/10.1016/j.ijpharm.2006.03.050

    CAS  Article  Google Scholar 

  44. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem 15:897–900. https://doi.org/10.1021/bc049951i

    CAS  Article  Google Scholar 

  45. Choimet M, Hyoung-Mi K, Jae-Min O, Tourrette A, Drouet C (2016) Nanomedicine: interaction of biomimetic apatite colloidal nanoparticles with human blood components. Colloids Surf B 145:87–94. https://doi.org/10.1016/j.colsurfb.2016.04.038

    CAS  Article  Google Scholar 

  46. Han Y, Wang X, Dai H, Li S (2012) Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions. ACS Appl Mater Interfaces 4:4616–4622. https://doi.org/10.1021/am300992x

    CAS  Article  Google Scholar 

  47. Boas U, Heegaard PMH (2004) Dendrimers in drug research. Chem Soc Rev 33:43–63. https://doi.org/10.1039/B309043B

    CAS  Article  Google Scholar 

  48. Mayer A, Vadon M, Rinner B, Novak A, Wintersteiger R, Fröhlich E (2009) The role of nanoparticle size in hemocompatibility. Toxicology 258:139–147. https://doi.org/10.1016/j.tox.2009.01.015

    CAS  Article  Google Scholar 

  49. Loretz B, Bernkop-Schnürch A (2007) vitro cytotoxicity testing of non-thiolated and thiolated chitosan nanoparticles for oral gene delivery. Nanotoxicology 1:139–148. https://doi.org/10.1080/17435390701554200

    CAS  Article  Google Scholar 

  50. Wang Q, Shen M, Zhao T et al (2015) Low toxicity and long circulation time of polyampholyte-coated magnetic nanoparticles for blood pool contrast agents. Sci Rep 5:7774. https://doi.org/10.1038/srep07774

    CAS  Article  Google Scholar 

  51. Zhu Q, Yang H, Li YY et al (2016) HP-DO3A-based amphiphilic MRI contrast agents and relaxation enhancement through their assembly with polyelectrolytes. J Mater Chem B 4:7241–7248

    CAS  Article  Google Scholar 

  52. Zhu Q, Yuan ZY, Qian WQ et al (2017) Spherical polyelectrolyte brushes as a novel platform for paramagnetic relaxation enhancement and passive Tumor Targeting. Adv Healthcare Mater 6:201700071. https://doi.org/10.1002/Adhm.201700071

    Article  Google Scholar 

  53. McKinlay AC, Morris RE, Horcajada P et al (2010) BioMOFs: metal-organic frameworks for biological and medical applications. Angew Chem Int Ed Engl 49:6260–6266. https://doi.org/10.1002/anie.201000048

    CAS  Article  Google Scholar 

  54. Park KM, Kim H, Murray J, Koo J, Kim K (2017) A facile preparation method for nanosized MOFs as a multifunctional material for cellular imaging and drug delivery. Supramol Chem 29:441–445. https://doi.org/10.1080/10610278.2016.1266359

    CAS  Article  Google Scholar 

  55. Verwilst P, Eliseeva SV, Vander Elst L et al (2012) A tripodal ruthenium-gadolinium metallostar as a potential α(v)β(3) integrin specific bimodal imaging contrast agent. Inorg Chem 51:6405–6411. https://doi.org/10.1021/ic300717m

    CAS  Article  Google Scholar 

  56. Liu D, He C, Poon C, Lin W (2014) Theranostic nanoscale coordination polymers for magnetic resonance imaging and bisphosphonate delivery. J Mater Chem B 2:8249–8255. https://doi.org/10.1039/C4TB00751D

    CAS  Article  Google Scholar 

  57. Park J, Baek M, Choi E et al (2009) Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T 1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T 1 MR images. ACS Nano 3:3663–3669. https://doi.org/10.1021/nn900761s

    CAS  Article  Google Scholar 

  58. Bridot J-L, Faure A-C, Laurent S et al (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129:5076–5084. https://doi.org/10.1021/ja068356j

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (21274042, 21503078), the Fundamental Research Funds for the Central Universities (22221818014), and Shanghai Leading Academic Discipline Project (B502). AH thanks the “Eastern Scholar Professorship” support from Shanghai local government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Hu.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10366 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, N., Xu, K., Tang, W. et al. Formation of nanosized Gd(III) coordination networks with tripodal amine-N-oxide type ligand through microemulsions to achieve high relaxivity and exceptional stability for MRI applications. J Mater Sci 55, 13206–13215 (2020). https://doi.org/10.1007/s10853-020-04946-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04946-3