Skip to main content
Log in

Z-scheme In2O3/WO3 heterogeneous photocatalysts with enhanced visible-light-driven photocatalytic activity toward degradation of organic dyes

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To effectively decompose the organic dyes in wastewater, a novel all-solid state Z-scheme In2O3/WO3 heterostructured photocatalyst was successfully prepared by loading In2O3 nanoparticles onto WO3 nano-needles through a two-step hydrothermal–solvothermal method. The phase structures, morphologies, chemical compositions, and optical adsorption properties of these photocatalysts were characterized in detail. In the Z-scheme photocatalytic system, the built-in internal electric field can accelerate the recombination of useless photo-generated holes on the VB of In2O3 and electrons on the CB of WO3. The retaining photo-generated charge carriers on the CB of In2O3 and VB of WO3 possess strong redox ability. Therefore, the In2O3/WO3 heterogeneous photocatalysts exhibited remarkably improved photocatalytic activity toward degradation of organic dyes and tetracycline hydrochloride compared to pure WO3 and In2O3 semiconductor materials under visible-light irradiation. The recycling experiments showed that Z-scheme In2O3/WO3 heterogeneous photocatalyst could still degrade 86.6% of methylene blue and 86.4% of rhodamine B even after three cycles, confirming its high photo-stability. The trapping experiments demonstrated that photo-generated holes and ·O2 were the predominant active species for photocatalytic degradation of organic dyes. Based on the experimental results, a possible photocatalytic mechanism of Z-scheme In2O3/WO3 heterostructure was proposed. This investigation provided a novel approach for construction of efficient heterostructured photocatalysts for wastewater purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Turcanu A, Bechtold T (2017) Cathodic decolourisation of reactive dyes in model effluents released from textile dyeing. J Clean Prod 142:1397–1405

    Article  CAS  Google Scholar 

  2. Wang JD, Yao JC, Wang L et al (2020) Multivariate optimization of the pulse electrochemical oxidation for treating recalcitrant dye wastewater. Sep Purif Technol 230:115851

    Article  CAS  Google Scholar 

  3. Ulson de Souza SMAG, Forgiarini E, Ulson de Souza AA (2007) Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP). J Hazard Mater 147:1073–1078

    Article  CAS  Google Scholar 

  4. Xu R, Su M, Liu Y et al (2020) Comparative study on the removal of different-type organic pollutants on hierarchical tetragonal bismutite microspheres: adsorption, degradation and mechanism. J Clean Prod 242:118366

    Article  CAS  Google Scholar 

  5. Anwer H, Mahmood A, Lee J et al (2019) Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges. Nano Res 12:955–972

    Article  CAS  Google Scholar 

  6. Zhao Y, Wang R, Fang K et al (2019) Investigating the synergetic dispersing effect of hydrolyzed biomacromolecule cellulase and SDS on CuPc pigment. Colloids Surf B 184:110568

    Article  CAS  Google Scholar 

  7. Wang H, Kong H, Zheng J et al (2020) Systematically exploring molecular aggregation and its impact on surface tension and viscosity in high concentration solutions. Molecules 25:1588

    Article  CAS  Google Scholar 

  8. Reddy IN, Reddy CV, Shim J et al (2020) Excellent visible-light driven photocatalyst of (Al, Ni) co-doped ZnO structures for organic dye degradation. Catal Today 340:277–285

    Article  CAS  Google Scholar 

  9. Nguyen CH, Lien TM, Van TTT et al (2020) Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites. Sep Purif Technol 232:115962

    Article  CAS  Google Scholar 

  10. Fakhri H, Mahjoub AR, Cheshme Khavar AH (2016) Improvement of visible light photocatalytic activity over graphene oxide/CuInS2/ZnO nanocomposite synthesized by hydrothermal method. Mater Sci Semicond Process 41:38–44

    Article  CAS  Google Scholar 

  11. Chen WC, Huang GY, Li XM et al (2019) Revealing the position effect of an alkylthio side chain in phenyl-substituted benzodithiophene-based donor polymers on the photovoltaic performance of non-Fullerene organic solar cells. ACS Appl Mater Interfaces 11:33173–33178

    Article  CAS  Google Scholar 

  12. Santhosh C, Velmurugan V, Jacob G et al (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    Article  CAS  Google Scholar 

  13. Fakhri H, Bagheri H (2020) Highly efficient Zr-MOF@WO3/graphene oxide photocatalyst: synthesis, characterization and photodegradation of tetracycline and malathion. Mater Sci Semicond Process 107:104815

    Article  CAS  Google Scholar 

  14. Mardiroosi A, Mahjoub AR, Fakhri H (2017) Efficient visible light photocatalytic activity based on magnetic graphene oxide decorated ZnO/NiO. J Mater Sci: Mater Electron 28:11722–11732

    CAS  Google Scholar 

  15. Low J, Yu J, Jaroniec M et al (2017) Heterojunction photocatalysts. Adv Mater 29:1601694

    Article  CAS  Google Scholar 

  16. Wang HL, Zang LS, Chen ZG et al (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244

    Article  CAS  Google Scholar 

  17. You JH, Guo YZ, Guo R et al (2019) A review of visible light-active photocatalysts for water disinfection: features and prospects. Chem Eng J 373:624–641

    Article  CAS  Google Scholar 

  18. Deng F, Lu XY, Luo YB et al (2019) Novel visible-light-driven direct Z-scheme CdS/CuInS2 nanoplates for excellent photocatalytic degradation performance and highly-efficient Cr(VI) reduction. Chem Eng J 361:1451–1461

    Article  CAS  Google Scholar 

  19. Zhao W, Feng Y, Huang HB et al (2019) A novel Z-scheme Ag3VO4/BiVO4 heterojunction photocatalyst: study on the excellent photocatalytic performance and photocatalytic mechanism. Appl Catal B Environ 245:448–458

    Article  CAS  Google Scholar 

  20. Wang M, Tan GQ, Zhang D et al (2019) Defect-mediated Z-scheme BiO2−x/Bi2O2.75 photocatalyst for full spectrum solar-driven organic dyes degradation. Appl Catal B Environ 254:98–112

    Article  CAS  Google Scholar 

  21. Xie RY, Zhang LP, Xu H et al (2015) Fabrication of Z-scheme photocatalyst Ag–AgBr@Bi20TiO32 and its visible-light photocatalytic activity for the degradation of isoproturon herbicide. J Mol Catal A: Chem 406:194–203

    Article  CAS  Google Scholar 

  22. Chen SF, Hu YF, Meng SG et al (2014) Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g–C3N4–WO3. Appl Catal B Environ 150–151:564–573

    Article  CAS  Google Scholar 

  23. Lu BA, Li XD, Wang TH et al (2013) WO3 nanoparticles decorated on both sidewalls of highly porous TiO2 nanotubes to improve UV and visible-light photocatalysis. J Mater Chem A 1:3900–3906

    Article  CAS  Google Scholar 

  24. Bhosale NY, Mali SS, Hong CK et al (2017) Hydrothermal synthesis of WO3 nanoflowers on etched ITO and their electrochromic properties. Electrochim Acta 246:1112–1120

    Article  CAS  Google Scholar 

  25. Ghosh S, Saha M, Paul S et al (2015) Maximizing the photo catalytic and photo response properties of multimodal plasmonic Ag/WO3-x heterostructure nanorods by variation of the Ag size. Nanoscale 7:18284–18298

    Article  CAS  Google Scholar 

  26. Tie LN, Yu CF, Zhao YL et al (2018) Fabrication of WO3 nanorods on reduced graphene oxide sheets with augmented visible light photocatalytic activity for efficient mineralization of dye. J Alloys Compd 769:83–91

    Article  CAS  Google Scholar 

  27. Zerjav G, Arshad MS, Djinovic P et al (2017) Electron trapping energy states of TiO2–WO3 composites and their influence on photocatalytic degradation of bisphenol A. Appl Catal B Environ 209:273–284

    Article  CAS  Google Scholar 

  28. Chen JY, Xiao XY, Wang Y et al (2019) Fabrication of hierarchical sheet-on-sheet WO3/g-C3N4 composites with enhanced photocatalytic activity. J Alloys Compd 777:325–334

    Article  CAS  Google Scholar 

  29. Liu XW, Xu JJ, Ni ZY et al (2019) Adsorption and visible-light-driven photocatalytic properties of Ag3PO4/WO3 composites: a discussion of the mechanism. Chem Eng J 356:22–33

    Article  CAS  Google Scholar 

  30. Luo J, Zhou XS, Ma L et al (2017) Fabrication of WO3/Ag2CrO4 composites with enhanced visible-light photodegradation towards methyl orange. Adv Powder Technol 28:1018–1027

    Article  CAS  Google Scholar 

  31. Xing YL, Que WX, Yin XT et al (2016) In2O3/Bi2Sn2O7 heterostructured nanoparticles with enhanced photocatalytic activity. Appl Surf Sci 387:36–44

    Article  CAS  Google Scholar 

  32. Li B, Li XW, Shao CL et al (2019) Hierarchically porous In2O3/In2S3 heterostructures as micronano photocatalytic reactors prepared by a novel polymer-assisted sol-gel freeze-drying method. Ind Eng Chem Res 58:14106–14114

    Article  CAS  Google Scholar 

  33. Li CH, Ming T, Wang JX et al (2014) Ultrasonic aerosol spray-assisted preparation of TiO2/In2O3 composite for visible-light-driven photocatalysis. J Catal 310:84–90

    Article  CAS  Google Scholar 

  34. Ma DD, Shi JW, Zou YJ et al (2018) Multiple carrier-transfer pathways in a flower-like In2S3/CdIn2S4/In2O3 ternary heterostructure for enhanced photocatalytic hydrogen production. Nanoscale 10:7860–7870

    Article  CAS  Google Scholar 

  35. An GW, Mahadik MA, Piao G et al (2019) Hierarchical TiO2@In2O3 heteroarchitecture photoanodes: mechanistic study on interfacial charge carrier dynamics through water splitting and organic decomposition. Appl Surf Sci 480:1–12

    Article  CAS  Google Scholar 

  36. Chen XX, Li R, Pan XY et al (2017) Fabrication of In2O3–Ag–Ag3PO4 composites with Z-scheme configuration for photocatalytic ethylene degradation under visible light irradiation. Chem Eng J 320:644–652

    Article  CAS  Google Scholar 

  37. Guo H, Jiang N, Wang HJ et al (2019) Pulsed discharge plasma assisted with graphene-WO3 nanocomposites for synergistic degradation of antibiotic enrofloxacin in water. Chem Eng J 372:226–240

    Article  CAS  Google Scholar 

  38. Zhang F, Li XY, Zhao QD et al (2016) Rational design of ZnFe2O4/In2O3 nanoheterostructures: efficient photocatalyst for gaseous 1,2-dichlorobenzene degradation and mechanistic insight. ACS Sustainable Chem Eng 4:4554–4562

    Article  CAS  Google Scholar 

  39. Guo H, Jiang N, Wang HJ et al (2019) Degradation of antibiotic chloramphenicol in water by pulsed discharge plasma combined with TiO2/WO3 composites: mechanism and degradation pathway. J Hazard Mater 371:666–676

    Article  CAS  Google Scholar 

  40. Yang HR, Tian J, Bo YY et al (2017) Visible photocatalytic and photoelectrochemical activities of TiO2 nanobelts modified by In2O3 nanoparticles. J Colloid Interface Sci 487:258–265

    Article  CAS  Google Scholar 

  41. Lei FC, Sun YF, Liu KT et al (2014) Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J Am Chem Soc 136:6826–6829

    Article  CAS  Google Scholar 

  42. Chang F, Zhang X, Chen H et al (2019) Ag/AgCl nanoparticles decorated 2D-Bi12O17Cl2 plasmonic composites prepared without exotic chlorine ions with enhanced photocatalytic performance. Mol Catal 477:110538

    Article  CAS  Google Scholar 

  43. Chen F, Yang Q, Wang SN et al (2017) Graphene oxide and carbon nitride nanosheets co-modified silver chromate nanoparticles with enhanced visible-light photoactivity and anti-photocorrosion properties towards multiple refractory pollutants degradation. Appl Catal B Environ 209:493–505

    Article  CAS  Google Scholar 

  44. Chu XF, Hu T, Gao F et al (2015) Gas sensing properties of graphene-WO3 composites prepared by hydrothermal method. Mater Sci Eng, B 193:97–104

    Article  CAS  Google Scholar 

  45. Ebrahimi R, Maleki A, Zandsalimi Y et al (2019) Photocatalytic degradation of organic dyes using WO3-doped ZnO nanoparticles fixed on a glass surface in aqueous solution. J Ind Eng Chem 73:297–305

    Article  CAS  Google Scholar 

  46. Zhang GP, Chen DY, Li NJ et al (2019) Fabrication of Bi2MoO6/ZnO hierarchical heterostructures with enhanced visible-light photocatalytic activity. Appl Catal B Environ 250:313–324

    Article  CAS  Google Scholar 

  47. Xie RY, Zhang LP, Xu H et al (2017) Construction of up-converting fluorescent carbon quantum dots/Bi20TiO32 composites with enhanced photocatalytic properties under visible light. Chem Eng J 310:79–90

    Article  CAS  Google Scholar 

  48. Fakhri H, Mahjoub AR, Aghayan H (2017) Effective removal of methylene blue and cerium by a novel pair set of heteropoly acids based functionalized graphene oxide: adsorption and photocatalytic study. Chem Eng Res Des 120:303–315

    Article  CAS  Google Scholar 

  49. Zheng RJ, Zhang M, Sun X et al (2019) Perylene-3,4,9,10-tetracarboxylic acid accelerated light-driven water oxidation on ultrathin indium oxide porous sheets. Appl Catal B Environ 254:667–676

    Article  CAS  Google Scholar 

  50. Chen Y, Huang W, Sangwan VK et al (2019) Polymer doping enables a two-dimensional electron gas for high-performance homojunction oxide thin-film transistors. Adv Mater 31:1805082

    Article  CAS  Google Scholar 

  51. Fu JW, Xu QL, Low JX et al (2019) Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B Environ 243:556–565

    Article  CAS  Google Scholar 

  52. Zhang Z, Yates JT (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112:5520–5551

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the assistance of Professor Hua Zhou in improving the English language. This study was funded by (1) China National Key Technology R&D Program (grant number 2017YFB0309800); (2) Shandong Province Key Technology R&D Program (grant number 2017CXGC1006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruyi Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1595 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, R., Fang, K., Liu, Y. et al. Z-scheme In2O3/WO3 heterogeneous photocatalysts with enhanced visible-light-driven photocatalytic activity toward degradation of organic dyes. J Mater Sci 55, 11919–11937 (2020). https://doi.org/10.1007/s10853-020-04863-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04863-5

Navigation