Skip to main content
Log in

Colloidal Au–CsPbBr3 for nonlinear saturable absorption effects

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We demonstrate the nonlinear saturable absorption effects of colloidal Au–CsPbBr3 inorganic nanocrystals (INCs) that may useful as a saturable absorber in passively mode-locked pulse lasers. Femtosecond open-aperture Z-scan technique is responsible for measuring the nonlinear saturable absorption effects at 800 nm with a repetition rate of 76 MHz and a laser pulse duration of 130 fs. Compared to colloidal pure-CsPbBr3 INCs, the nonlinear saturable absorption coefficient β ~ 2.34 × 10–10 cm/W and the second-order absorption cross section σ2 ~ 2.13 × 104 GM of colloidal Au–CsPbBr3 INCs can be improved by up to one order of magnitude at the Au-doping concentration of 3.5 mmol/L, thanks to an obviously cocked tail absorption from visible to near-infrared spectral region through the localized surface plasmon-induced charge transition at Au–CsPbBr3 INCs interface rather than the light scattering of the deposited Au nanoparticles. And the deposited Au nanoparticles have not changed the crystalline structure, stability, and morphology of colloidal pure-CsPbBr3 INCs. As a result, colloidal Au–CsPbBr3 INCs are expected to become a potential saturable absorption candidate material used in passively mode-locked pulse lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure. 1
Figure. 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Keller U (2003) Recent developments in compact ultrafast lasers. Nature 424:831–838

    Article  CAS  Google Scholar 

  2. Kues M, Reimer C, Wetzel B, Roztocki P, Little BE, Chu ST, Hansson T, Viktorov EA, Moss DJ, Morandotti R (2017) Passively mode-locked laser with an ultra-narrow spectral width. Nat Photonics 11:159–162

    Article  CAS  Google Scholar 

  3. DeMaria AJ, Stetser DA, Heynau H (1966) Self-mode-locking of lasers with saturable absorbers. Appl Phys Lett 8:174–176

    Article  Google Scholar 

  4. Zhang SF, Shen CR, Kislyakov IM, Dong NN, Ryzhov A, Zhang XY, Belousova IM, Nunzi JM, Wang J (2019) Photonic-crystal-based broadband graphene saturable absorber. Opt Lett 44:4785–4788

    Article  CAS  Google Scholar 

  5. Zhao CJ, Zhang H, Qi X, Chen Y, Wang ZT, Wen SC, Tang DY (2012) Ultra-short pulse generation by a topological insulator based saturable absorber. Appl Phys Lett 101:211106

    Article  Google Scholar 

  6. Chen H, Yin JD, Yang JW, Zhang XJ, Liu ML, Jiang ZK, Wang JZ, Sun ZP, Guo T, Liu WJ, Yan PG (2017) Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics. Opt Lett 42:4279–4282

    Article  CAS  Google Scholar 

  7. Zhang M, Wu Q, Zhang F, Chen LL, Jin XX, Hu YW, Zheng Z, Zhang H (2019) 2D black phosphorus saturable absorbers for ultrafast photonics. Adv Opt Mater 7:1800224

    Article  Google Scholar 

  8. Xiao PS, Wu K, Mao D, Chen JP (2019) A pulsewidth measurement technology based on carbon-nanotube saturable absorber. Opt Express 27:4188–4203

    Article  CAS  Google Scholar 

  9. De Roo J, Lbáñez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins JC, Van Driessche I, Kovalenko MV, Hens Z (2016) Highly dynamic ligand binding and light absorption coefficient lead bromide perovskite nanocrystals. Acs Nano 10:2071–2081

    Article  Google Scholar 

  10. Cheng PK, Tang CY, Wang XY, Zeng LH, Tsang YH (2020) Passively Q-switched and femtosecond mode-locked erbium-doped fiber laser based on a 2D palladium disulfide (PdS2) saturable absorber. Photonics Res 8:511–518

    Article  Google Scholar 

  11. Jhon YI, Lee J, Seo M, Lee JH, Jhon YM (2019) Van der Waals layered tin selenide as highly nonlinear ultrafast saturable absorbers. Adv Opt Mater 7:1801745

    Article  Google Scholar 

  12. Lu L, Pang LH, Zhao QY, Wang YG, Liu WJ (2020) Niobium disulfide as a new saturable absorber for an ultrafast fiber laser. Nanoscale 12:4537–4543

    Article  Google Scholar 

  13. Mao D, Cui XQ, He ZW, Lu H, Zhang WD, Wang L, Zhuang Q, Hua SJ, Mei T, Zhao JL (2018) Broadband polarization-insensitive saturable absorption of Fe2O3 nanoparticles. Nanoscale 10:21219–21224

    Article  CAS  Google Scholar 

  14. Zhang YX, Lu DZ, Yu HH, Zhang HJ (2019) Low-dimensional saturable absorbers in the visible spectral region. Adv Opt Mater 7:1800886

    Article  Google Scholar 

  15. Chen HB, Wang F, Liu MY, Qian MD, Men XJ, Yao CF, Xi L, Qin GS, Wu CF (2019) Near-infrared broadband polymer-dot modulator with high optical nonlinearity for ultrafast pulsed lasers. Lasers Photonics Rev 13:1800326

    Article  Google Scholar 

  16. Malouf A, Henderson-Sapir O, Set S, Yamashita S, Ottaway DJ (2019) Two-photon absorption and saturable absorption of mid-IR in graphene. Appl Phys Lett 114:091111

    Article  Google Scholar 

  17. Wang J, Wang T, Shi XY, Wu J, Xu YJ, Ding XG, Yu Q, Zhang K, Zhou P, Jiang ZF (2019) NiP3 nanosheets for passive pulse generation in an Er-doped fiber laser. J Mater Chem C 7:14625–14631

    Article  CAS  Google Scholar 

  18. Sun XL, Shi BN, Wang HY, Lin N, Liu SD, Yang KJ, Zhang BT, He JL (2019) Optical properties of 2D 3R phase niobium disulfide and its application as a saturable absorber. Av Opt Mater 8:1901181

    Article  Google Scholar 

  19. Li R, Pang C, Li ZQ, Yang M, Amekura H, Dong NN, Wang J, Ren F, Wu Q, Chen F (2020) Fused silica with embedded 2D-like Ag nanoparticles monolayer: tunable saturable absorbers by interparticle spacing manipulation. Lasers Photonics Rev 14:1900302

    Article  CAS  Google Scholar 

  20. Xie ZJ, Zhang F, Liang ZM, Fan TJ, Li ZJ, Jiang XT, Chen H, Li JQ, Zhang H (2019) Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. Photonics Res 7:494–502

    Article  CAS  Google Scholar 

  21. Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk MI, Grotevent MJ, Kovalenko MV (2015) Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I). Nano Lett 15:5635–5640

    Article  CAS  Google Scholar 

  22. Vale BRC, Socie E, Burgos-Caminal A, Bettini J, Schiavon MA, Moser JE (2020) Exciton, Biexciton, and Hot exciton dynamics in CsPbBr3 colloidal nanoplatelets. J Phys Chem Lett 11:387–394

    Article  CAS  Google Scholar 

  23. Wang Y, Li XM, Song JZ, Xiao L, Zeng HB, Sun HD (2015) All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv Mater 27:7101–7108

    Article  CAS  Google Scholar 

  24. Tan MJH, Wang Y, Chan Y (2019) Solution-based green amplified spontaneous emission from colloidal perovskite nanocrystals exhibiting high stability. Appl Phys Lett 114:183101

    Article  Google Scholar 

  25. Zhou Y, Hu ZP, Li Y, Xu JQ, Tang XS, Tang YL (2016) CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser. Appl Phys Lett 108:261108

    Article  Google Scholar 

  26. Li JZ, Dong HX, Xu B, Zhang SF, Cai ZP, Wang J, Zhang L (2017) CsPbBr3 perovskite quantum dots: saturable absorption properties and passively Q-switched visible lasers. Photonics Res 5:457–460

    Article  CAS  Google Scholar 

  27. Roman BJ, Otto J, Galik C, Downing R, Sheldon M (2017) Au exchange or Au deposition: dual reaction pathways in Au–CsPbBr3 heterostructure nanoparticles. Nano Lett 17:5561–5566

    Article  CAS  Google Scholar 

  28. Wu K, Chen J, McBride JR, Lian T (2015) Efficient hot-electron transfer by a plasman-induced interfacial charge-transfer transition. Science 349:632–635

    Article  CAS  Google Scholar 

  29. Warren BE (1990) X-ray diffraction. Dover Publications, INC., New York, pp 251–254

    Google Scholar 

  30. Swarnkar A, Marshall AR, Sanehira EM, Chernomordik BD, Moore DT, Christians JA, Chakrabarti T, Luther JM (2016) Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354:92–95

    Article  CAS  Google Scholar 

  31. Balakrishnan SK, Kamat PV (2017) Au–CsPbBr3 hybrid architecture: anchoring gold nanoparticles on cubic perovskite nanocrystals. Acs Energy Lett 2:88–93

    Article  CAS  Google Scholar 

  32. Xu JX, Siriwardana K, Zhou YD, Zou SL, Zhang DM (2018) Quantification of gold nanoparticles ultraviolet-visible extinction, absorption, and scattering cross-section spectra and scattering depolarization spectra: The effects of nanoparticle geometry, solvent composition, ligand functionalization, and nanoparticle aggregation. Anal Chem 90:785–793

    Article  CAS  Google Scholar 

  33. Yang XY, Xiang WD, Liu HT, Zhao HJ, Zhang XY, Liang XJ (2011) Microstructures and the third-order nonlinearities of semimetal Bi nanocrystals in the sodium borosilicate glass. Mater Lett 65:1959–1962

    Article  CAS  Google Scholar 

  34. Ketavath R, Katturi NK, Ghugal SG, Kolli HK, Swetha T, Soma VR, Murali B (2019) Deciphering the ultrafast nonlinear optical properties and dynamics of pristine and Ni-doped CsPbBr3 colloidal two-dimensional nanocrystals. J Phys Chem Lett 10:5577–5584

    Article  CAS  Google Scholar 

  35. Wang Y, Li XM, Zhao X, Xiao L, Zeng HB, Sun HD (2016) Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett 16:448–453

    Article  CAS  Google Scholar 

  36. Han QJ, Wu WZ, Liu WL, Yang QX, Yang YQ (2018) Two-photon absorption and upconversion luminescence of colloidal CsPbX3 quantum dots. Opt Mater 75:880–886

    Article  CAS  Google Scholar 

  37. Krishnakanth KN, Seth S, Samanta A, Rao SV (2018) Broadband femtosecond nonlinear optical properties of CsPbBr3 perovskite nanocrystals. Opt Lett 43:603–606

    Article  CAS  Google Scholar 

  38. Liu SJ, Chen GX, Huang YY, Lin S, Zhang YJ, He ML, Xiang WD, Liang XJ (2017) Tunable fluorescence and optical nonlinearities of all inorganic colloidal cesium lead halide perovskite nanocrystals. J Alloy Compd 724:889–896

    Article  CAS  Google Scholar 

  39. Tripathi SK, Kaur R, Jyoti K (2015) Investigation of nonlinear optical properties of CdS/PS polymer nanocomposites synthesized by chemical route. Opt Commun 352:55–62

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was funded by National Natural Science Foundation of China (51202166), Natural Science Foundation of Zhejiang Province (Y4100233), and Zhejiang Xinmiao Talent Program (KZS1810064P01). The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Shen, Y., Liu, H. et al. Colloidal Au–CsPbBr3 for nonlinear saturable absorption effects. J Mater Sci 55, 10678–10688 (2020). https://doi.org/10.1007/s10853-020-04810-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04810-4