Skip to main content

Advertisement

Log in

The structural evolution in the growth process of FePt embedded in MgO matrix

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

FePt nanoparticles were successfully embedded in a single-crystal MgO matrix using a pulse laser deposition method. The growth behaviors were well controlled and monitored in situ by the reflection high-energy electron diffraction. The FePt nanoparticles and the MgO matrix were grown in three-dimensional island-like and two-dimensional layered modes, respectively. The embedded FePt nanoparticles do not affect the epitaxial growth of MgO layer. The epitaxial relationship between the FePt and MgO is [200]FePt ‖ [100]MgO. Due to the lattice mismatch between the MgO and FePt, the edge dislocation is observed in the interior of the FePt particles. The study on the structural evolution in the growth process of FePt embedded in the MgO matrix has benefited for not only fundamental research but also the applications of FePt ultrahigh-density perpendicular magnetic recording.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Feng C, Zhan Q, Li B, Teng J, Li M, Jiang Y, Yua G (2008) Magnetic properties and microstructure of FePt/Au multilayers with high perpendicular magnetocrystalline anisotropy. Appl Phys Lett 93(15):152513–152513-3. https://doi.org/10.1063/1.3001801

    Article  CAS  Google Scholar 

  2. Thiele JU, Maat S, Fullerton EE (2003) FeRh/FePt exchange spring films for thermally assisted magnetic recording media. Appl Phys Lett 82(17):2859–2861. https://doi.org/10.1063/1.1571232

    Article  CAS  Google Scholar 

  3. Weller D, Moser A, Folks L, Best ME, Lee W, Toney MF, Schwickert M, Thiele JU, Doerner MF (2000) High K-u materials approach to 100 Gbits/in(2). IEEE Trans Magn 36(1):10–15. https://doi.org/10.1109/20.824418

    Article  CAS  Google Scholar 

  4. Coffey KR, Parker MA, Howard JK (1995) High anisotropy L10 thin films for longitudinal recording. IEEE Trans Magn 31(6):2737–2739. https://doi.org/10.1109/20.490108

    Article  CAS  Google Scholar 

  5. Zhang L, Takahashi YK, Perumal A, Hono K (2010) L1(0)-ordered high coercivity (FePt)Ag-C granular thin films for perpendicular recording. J Magn Magn Mater 322(18):2658–2664. https://doi.org/10.1016/j.jmmm.2010.04.003

    Article  CAS  Google Scholar 

  6. Lee C-H, Cho Y-L, Lee W-P, Suh S-J (2014) The magnetic properties and microstructure of Co–Pt thin films using wet etching process. J Nanosci Nanotechnol 14(11):8688–8692. https://doi.org/10.1166/jnn.2014.10017

    Article  CAS  Google Scholar 

  7. Seaman JC (2000) Thin-foil SEM analysis of soil and groundwater colloids: reducing instrument and operator bias. Environ Sci Technol 34(1):187–191. https://doi.org/10.1021/es990567j

    Article  CAS  Google Scholar 

  8. Ohtake M, Nakamura M, Futamoto M, Kirino F, Inaba N (2017) Enhancement of L1(0) ordering with the c-axis perpendicular to the substrate in FePt alloy film by using an epitaxial cap-layer. AIP Adv 7(5):056320. https://doi.org/10.1063/1.4977720

    Article  CAS  Google Scholar 

  9. Huang YH, Wan J, Zhang Y, Wang HL, Hadjipanayis GC, Niarchos D, Weller D (2005) Investigation of particle formation and superstructure development in FePt nanoparticles and their effect on magnetic properties. J Magn Magn Mater 294(2):232–238. https://doi.org/10.1016/j.jmmm.2005.03.039

    Article  CAS  Google Scholar 

  10. Sarker D, Bhattacharya S, Srivastava P, Ghosh S (2016) Triggering of spin-flipping modulated exchange bias in FeCo nanoparticles by electronic excitation. Sci Rep 6(1):39292. https://doi.org/10.1038/srep39292

    Article  CAS  Google Scholar 

  11. Lin JJ, Zhang T, Lee P, Springham SV, Tan TL, Rawat RS, White T, Ramanujan R, Guo J (2007) Magnetic trapping induced low temperature phase transition from fcc to fct in pulsed laser deposition of FePt: Al2O3 nanocomposite thin films. Appl Phys Lett 91(6):4423. https://doi.org/10.1063/1.2768904

    Article  CAS  Google Scholar 

  12. Bai J, Yang Z, Wei F, Matsumoto M, Morisako A (2003) Nano-composite FePt–Al2O3 films for high-density magnetic recording. J Magn Magn Mater 257(1):132–137. https://doi.org/10.1016/s0304-8853(02)01166-6

    Article  CAS  Google Scholar 

  13. Luo CP, Sellmyer DJ (1999) Structural and magnetic properties of FePt:SiO2 granular thin films. Appl Phys Lett 75(20):3162–3164. https://doi.org/10.1063/1.125264

    Article  CAS  Google Scholar 

  14. Hyun C, Lee DC, Korgel BA, de Lozanne A (2007) Micromagnetic study of single-domain FePt nanocrystals overcoated with silica. Nanotechnology 18(5):055704. https://doi.org/10.1088/0957-4484/18/5/055704

    Article  CAS  Google Scholar 

  15. Zhou T-J, Lim BC, Liu B (2009) Anisotropy graded FePt–TiO2 nanocomposite thin films with small grain size. Appl Phys Lett 94(15):152505–152505-3. https://doi.org/10.1063/1.3116623

    Article  CAS  Google Scholar 

  16. Tang R, Zhang W, Li Y (2010) Annealing environment effects on the microstructure and magnetic properties of FePt–TiO2 and CoPt–TiO2 nanocomposite films. J Alloys Compd 496(1–2):380–384. https://doi.org/10.1016/j.jallcom.2010.02.018

    Article  CAS  Google Scholar 

  17. Liu Y, Yang K, Cheng L, Zhu J, Ma X, Xu H, Li Y, Guo L, Gu H, Liu Z (2013) PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: potential theranostic applications and in vivo toxicity studies. Nanomed Nanotechnol Biol Med 9(7):1077–1088. https://doi.org/10.1016/j.nano.2013.02.010

    Article  CAS  Google Scholar 

  18. Yu YS, Li H-B, Li WL, Liu M, Fei WD (2008) Low-temperature ordering of L1(0) FePt phase in FePt thin film with AgCu underlayer. J Magn Magn Mater 320(19):L125–L128. https://doi.org/10.1016/j.jmmm.2008.05.012

    Article  CAS  Google Scholar 

  19. Kang S, Harrell JW, Nikles DE (2002) Reduction of the fcc to L1(0) ordering temperature for self-assembled FePt nanoparticles containing Ag. Nano Lett 2(10):1033–1036. https://doi.org/10.1021/nl025614b

    Article  CAS  Google Scholar 

  20. Kang K, Zhang ZG, Papusoi C, Suzuki T (2004) Composite nanogranular films of FePt–MgO with (001) orientation onto glass substrates. Appl Phys Lett 84(3):404–406. https://doi.org/10.1063/1.1641168

    Article  CAS  Google Scholar 

  21. Suzuki T, Zhang ZG, Singh AK, Yin JH, Perumal A, Osawa H (2005) High-density perpendicular magnetic recording media of granular-type (FePt/MgO)/soft underlayer. IEEE Trans Magn 41(2):555–559. https://doi.org/10.1109/tmag.2004.838073

    Article  CAS  Google Scholar 

  22. Tomou A, Panagiotopoulos I, Gournis D, Kooi B (2007) L1(0) ordering and magnetic interactions in FePt nanoparticles embedded in MgO and SiO2 shell matrices. J Appl Phys 102(2):023910. https://doi.org/10.1063/1.2752141

    Article  CAS  Google Scholar 

  23. Wei DH, You KL, Yao YD, Chiang DP, Liou Y, Chin TS, Yu CC (2007) Grain size refining and microstructure of FePt/MgO nanogranular thin films. J Magn Magn Mater 310(2):E753–E755. https://doi.org/10.1016/j.jmmm.2006.10.802

    Article  CAS  Google Scholar 

  24. Ge F, Bai L, Wu W, Cao L, Wang X, Ma Y, Han S, Wang H, An X, Wang H, Shen J (2010) The controllable growth of Co-BaTiO3 nanocomposite epitaxial film by laser molecular beam epitaxy. J Cryst Growth 312(16–17):2489–2493. https://doi.org/10.1016/j.jcrysgro.2010.05.031

    Article  CAS  Google Scholar 

  25. Deibuk VG (2003) Thermodynamic stability of GaInSb, InAsSb, and GaInP epitaxial films. Semiconductors 37(10):1151–1155. https://doi.org/10.1134/1.1619508

    Article  CAS  Google Scholar 

  26. Karpenko OP, Yalisove SM, Eaglesham DJ (1997) Surface roughening during low temperature Si(100) epitaxy. J Appl Phys 82(3):1157–1165. https://doi.org/10.1063/1.365883

    Article  CAS  Google Scholar 

  27. Friesen C, Thompson CV (2004) Correlation of stress and atomic-scale surface roughness evolution during intermittent homoepitaxial growth of (111)-oriented Ag and Cu. Phys Rev Lett 93(5):056104. https://doi.org/10.1103/PhysRevLett.93.056104

    Article  CAS  Google Scholar 

  28. Yao JY, Anderson TG, Dunlop GL (1991) The interfacial morphology of strained epitaxial InxGa1-xAs/GaAs. J Appl Phys 69(4):2224–2230. https://doi.org/10.1063/1.348700

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 61574091), the Center of Advanced Materials and Devices and the Analytical and Testing Center of SJTU. We also thank Instrumental Analysis Center of SJTU for the analysis supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weidong Wu or Yafei Zhang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Xiao, T., Wang, J. et al. The structural evolution in the growth process of FePt embedded in MgO matrix. J Mater Sci 55, 12305–12313 (2020). https://doi.org/10.1007/s10853-020-04795-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04795-0