Abstract
FePt nanoparticles were successfully embedded in a single-crystal MgO matrix using a pulse laser deposition method. The growth behaviors were well controlled and monitored in situ by the reflection high-energy electron diffraction. The FePt nanoparticles and the MgO matrix were grown in three-dimensional island-like and two-dimensional layered modes, respectively. The embedded FePt nanoparticles do not affect the epitaxial growth of MgO layer. The epitaxial relationship between the FePt and MgO is [200]FePt ‖ [100]MgO. Due to the lattice mismatch between the MgO and FePt, the edge dislocation is observed in the interior of the FePt particles. The study on the structural evolution in the growth process of FePt embedded in the MgO matrix has benefited for not only fundamental research but also the applications of FePt ultrahigh-density perpendicular magnetic recording.






Similar content being viewed by others
References
Feng C, Zhan Q, Li B, Teng J, Li M, Jiang Y, Yua G (2008) Magnetic properties and microstructure of FePt/Au multilayers with high perpendicular magnetocrystalline anisotropy. Appl Phys Lett 93(15):152513–152513-3. https://doi.org/10.1063/1.3001801
Thiele JU, Maat S, Fullerton EE (2003) FeRh/FePt exchange spring films for thermally assisted magnetic recording media. Appl Phys Lett 82(17):2859–2861. https://doi.org/10.1063/1.1571232
Weller D, Moser A, Folks L, Best ME, Lee W, Toney MF, Schwickert M, Thiele JU, Doerner MF (2000) High K-u materials approach to 100 Gbits/in(2). IEEE Trans Magn 36(1):10–15. https://doi.org/10.1109/20.824418
Coffey KR, Parker MA, Howard JK (1995) High anisotropy L10 thin films for longitudinal recording. IEEE Trans Magn 31(6):2737–2739. https://doi.org/10.1109/20.490108
Zhang L, Takahashi YK, Perumal A, Hono K (2010) L1(0)-ordered high coercivity (FePt)Ag-C granular thin films for perpendicular recording. J Magn Magn Mater 322(18):2658–2664. https://doi.org/10.1016/j.jmmm.2010.04.003
Lee C-H, Cho Y-L, Lee W-P, Suh S-J (2014) The magnetic properties and microstructure of Co–Pt thin films using wet etching process. J Nanosci Nanotechnol 14(11):8688–8692. https://doi.org/10.1166/jnn.2014.10017
Seaman JC (2000) Thin-foil SEM analysis of soil and groundwater colloids: reducing instrument and operator bias. Environ Sci Technol 34(1):187–191. https://doi.org/10.1021/es990567j
Ohtake M, Nakamura M, Futamoto M, Kirino F, Inaba N (2017) Enhancement of L1(0) ordering with the c-axis perpendicular to the substrate in FePt alloy film by using an epitaxial cap-layer. AIP Adv 7(5):056320. https://doi.org/10.1063/1.4977720
Huang YH, Wan J, Zhang Y, Wang HL, Hadjipanayis GC, Niarchos D, Weller D (2005) Investigation of particle formation and superstructure development in FePt nanoparticles and their effect on magnetic properties. J Magn Magn Mater 294(2):232–238. https://doi.org/10.1016/j.jmmm.2005.03.039
Sarker D, Bhattacharya S, Srivastava P, Ghosh S (2016) Triggering of spin-flipping modulated exchange bias in FeCo nanoparticles by electronic excitation. Sci Rep 6(1):39292. https://doi.org/10.1038/srep39292
Lin JJ, Zhang T, Lee P, Springham SV, Tan TL, Rawat RS, White T, Ramanujan R, Guo J (2007) Magnetic trapping induced low temperature phase transition from fcc to fct in pulsed laser deposition of FePt: Al2O3 nanocomposite thin films. Appl Phys Lett 91(6):4423. https://doi.org/10.1063/1.2768904
Bai J, Yang Z, Wei F, Matsumoto M, Morisako A (2003) Nano-composite FePt–Al2O3 films for high-density magnetic recording. J Magn Magn Mater 257(1):132–137. https://doi.org/10.1016/s0304-8853(02)01166-6
Luo CP, Sellmyer DJ (1999) Structural and magnetic properties of FePt:SiO2 granular thin films. Appl Phys Lett 75(20):3162–3164. https://doi.org/10.1063/1.125264
Hyun C, Lee DC, Korgel BA, de Lozanne A (2007) Micromagnetic study of single-domain FePt nanocrystals overcoated with silica. Nanotechnology 18(5):055704. https://doi.org/10.1088/0957-4484/18/5/055704
Zhou T-J, Lim BC, Liu B (2009) Anisotropy graded FePt–TiO2 nanocomposite thin films with small grain size. Appl Phys Lett 94(15):152505–152505-3. https://doi.org/10.1063/1.3116623
Tang R, Zhang W, Li Y (2010) Annealing environment effects on the microstructure and magnetic properties of FePt–TiO2 and CoPt–TiO2 nanocomposite films. J Alloys Compd 496(1–2):380–384. https://doi.org/10.1016/j.jallcom.2010.02.018
Liu Y, Yang K, Cheng L, Zhu J, Ma X, Xu H, Li Y, Guo L, Gu H, Liu Z (2013) PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: potential theranostic applications and in vivo toxicity studies. Nanomed Nanotechnol Biol Med 9(7):1077–1088. https://doi.org/10.1016/j.nano.2013.02.010
Yu YS, Li H-B, Li WL, Liu M, Fei WD (2008) Low-temperature ordering of L1(0) FePt phase in FePt thin film with AgCu underlayer. J Magn Magn Mater 320(19):L125–L128. https://doi.org/10.1016/j.jmmm.2008.05.012
Kang S, Harrell JW, Nikles DE (2002) Reduction of the fcc to L1(0) ordering temperature for self-assembled FePt nanoparticles containing Ag. Nano Lett 2(10):1033–1036. https://doi.org/10.1021/nl025614b
Kang K, Zhang ZG, Papusoi C, Suzuki T (2004) Composite nanogranular films of FePt–MgO with (001) orientation onto glass substrates. Appl Phys Lett 84(3):404–406. https://doi.org/10.1063/1.1641168
Suzuki T, Zhang ZG, Singh AK, Yin JH, Perumal A, Osawa H (2005) High-density perpendicular magnetic recording media of granular-type (FePt/MgO)/soft underlayer. IEEE Trans Magn 41(2):555–559. https://doi.org/10.1109/tmag.2004.838073
Tomou A, Panagiotopoulos I, Gournis D, Kooi B (2007) L1(0) ordering and magnetic interactions in FePt nanoparticles embedded in MgO and SiO2 shell matrices. J Appl Phys 102(2):023910. https://doi.org/10.1063/1.2752141
Wei DH, You KL, Yao YD, Chiang DP, Liou Y, Chin TS, Yu CC (2007) Grain size refining and microstructure of FePt/MgO nanogranular thin films. J Magn Magn Mater 310(2):E753–E755. https://doi.org/10.1016/j.jmmm.2006.10.802
Ge F, Bai L, Wu W, Cao L, Wang X, Ma Y, Han S, Wang H, An X, Wang H, Shen J (2010) The controllable growth of Co-BaTiO3 nanocomposite epitaxial film by laser molecular beam epitaxy. J Cryst Growth 312(16–17):2489–2493. https://doi.org/10.1016/j.jcrysgro.2010.05.031
Deibuk VG (2003) Thermodynamic stability of GaInSb, InAsSb, and GaInP epitaxial films. Semiconductors 37(10):1151–1155. https://doi.org/10.1134/1.1619508
Karpenko OP, Yalisove SM, Eaglesham DJ (1997) Surface roughening during low temperature Si(100) epitaxy. J Appl Phys 82(3):1157–1165. https://doi.org/10.1063/1.365883
Friesen C, Thompson CV (2004) Correlation of stress and atomic-scale surface roughness evolution during intermittent homoepitaxial growth of (111)-oriented Ag and Cu. Phys Rev Lett 93(5):056104. https://doi.org/10.1103/PhysRevLett.93.056104
Yao JY, Anderson TG, Dunlop GL (1991) The interfacial morphology of strained epitaxial InxGa1-xAs/GaAs. J Appl Phys 69(4):2224–2230. https://doi.org/10.1063/1.348700
Acknowledgements
This work is supported by National Natural Science Foundation of China (No. 61574091), the Center of Advanced Materials and Devices and the Analytical and Testing Center of SJTU. We also thank Instrumental Analysis Center of SJTU for the analysis supports.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declared that they have no conflicts of interest to this work.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yu, J., Xiao, T., Wang, J. et al. The structural evolution in the growth process of FePt embedded in MgO matrix. J Mater Sci 55, 12305–12313 (2020). https://doi.org/10.1007/s10853-020-04795-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-020-04795-0


