Knapp FF, Dash A (eds) (2016) Radionuclide generator systems represent convenient production systems to provide therapeutic radionuclides. In: Radiopharmaceuticals for therapy. Springer India, New Delhi, pp 131–157
Khajepour A, Rahmani F (2017) An approach to design a 90 Sr radioisotope thermoelectric generator using analytical and Monte Carlo methods with ANSYS, COMSOL, and MCNP. Appl Radiat Isot 119:51–59. https://doi.org/10.1016/j.apradiso.2016.11.001
CAS
Article
Google Scholar
O’Brien RC, Ambrosi RM, Bannister NP et al (2008) Safe radioisotope thermoelectric generators and heat sources for space applications. J Nucl Mater 377:506–521. https://doi.org/10.1016/j.jnucmat.2008.04.009
CAS
Article
Google Scholar
Ryu J, Kim S, Hong H-J et al (2016) Strontium ion (Sr2+) separation from seawater by hydrothermally structured titanate nanotubes: removal vs. recovery. Chem Eng J 304:503–510. https://doi.org/10.1016/j.cej.2016.06.131
CAS
Article
Google Scholar
Merceille A, Weinzaepfel E, Barré Y, Grandjean A (2012) The sorption behaviour of synthetic sodium nonatitanate and zeolite A for removing radioactive strontium from aqueous wastes. Sep Purif Technol 96:81–88. https://doi.org/10.1016/j.seppur.2012.05.018
CAS
Article
Google Scholar
Huckman ME, Latheef IM, Anthony RG (1999) Ion exchange of several radionuclides on the hydrous crystalline silicotitanate, UOP IONSIV IE-911. Sep Sci Technol 34:1145–1166. https://doi.org/10.1080/01496399908951086
CAS
Article
Google Scholar
Dyer A, Pillinger M, Harjula R, Amin S (2000) Sorption characteristics of radionuclides on synthetic birnessite-type layered manganese oxides. J Mater Chem 10:1867–1874. https://doi.org/10.1039/B002435J
CAS
Article
Google Scholar
Dyer A, Pillinger M, Newton J et al (2000) Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides. Chem Mater 12:3798–3804. https://doi.org/10.1021/cm001142v
CAS
Article
Google Scholar
Hasany SM, Chaudhary MH (1981) Adsorption studies of strontium on manganese dioxide from aqueous solutions. Int J Appl Radiat and Isot 32:899–904. https://doi.org/10.1016/0020-708X(81)90076-4
CAS
Article
Google Scholar
Griffith CS, Luca V (2004) Ion-exchange properties of microporous tungstates. Chem Mater 16:4992–4999. https://doi.org/10.1021/cm049335w
CAS
Article
Google Scholar
Möller T, Clearfield A, Harjula R (2002) Preparation of hydrous mixed metal oxides of Sb, Nb, Si, Ti and W with a pyrochlore structure and exchange of radioactive cesium and strontium ions into the materials. Microporous Mesoporous Mater 54:187–199. https://doi.org/10.1016/S1387-1811(02)00320-7
Article
Google Scholar
Griffith CS, Luca V, Hanna JV et al (2009) Microcrystalline hexagonal tungsten bronze. 1. Basis of ion exchange selectivity for cesium and strontium. Inorg Chem 48:5648–5662. https://doi.org/10.1021/ic801294x
CAS
Article
Google Scholar
Li X, Mu W, Liu B et al (2013) Adsorption kinetic, isotherm and thermodynamic studies of Sr2+ onto hexagonal tungsten oxide. J Radioanal Nucl Chem 298:47–53. https://doi.org/10.1007/s10967-013-2617-5
CAS
Article
Google Scholar
Bartha L, Kiss AB, Szalay T (1995) Chemistry of tungsten oxide bronzes. In: Bartha L, Lassner E, Schubert W-D, Lux B (eds) The chemistry of non-sag tungsten. Pergamon, Oxford, pp 77–91
Chapter
Google Scholar
Gao T, Jelle BP (2013) Visible-light-driven photochromism of hexagonal sodium tungsten bronze nanorods. J Phys Chem C 117:13753–13761. https://doi.org/10.1021/jp404597c
CAS
Article
Google Scholar
Tilley RJD (1995) The crystal chemistry of the higher tungsten oxides. In: Bartha L, Lassner E, Schubert W-D, Lux B (eds) The chemistry of non-sag tungsten. Pergamon, Oxford, pp 93–109
Chapter
Google Scholar
Reise KP, Prince E, Stanley Whittingham M (1992) Rietveld analysis of sodium tungstate hydrate NaxWO3+x/2×yH2O, which has the hexagonal tungsten bronze structure. Chem Mater 4:307–312. https://doi.org/10.1021/cm00020a016
Article
Google Scholar
Luca V, Drabarek E, Chronis H, McLeod T (2006) Tungsten bronze-based nuclear waste form ceramics. Part 3: the system Cs0.3MxW1−xO3 for the immobilization of radio cesium. J Nucl Mater 358:164–175. https://doi.org/10.1016/j.jnucmat.2006.06.019
CAS
Article
Google Scholar
Mu W, Yu Q, Wei H et al (2017) Porous three-dimensional reduced graphene oxide merged with WO3 for efficient removal of radioactive strontium. Appl Surf Sci 423:1203–1211. https://doi.org/10.1016/j.apsusc.2017.06.206
CAS
Article
Google Scholar
Li X, Mu W, Xie X et al (2014) Strontium adsorption on tantalum-doped hexagonal tungsten oxide. J Hazard Mater 264:386–394. https://doi.org/10.1016/j.jhazmat.2013.11.032
CAS
Article
Google Scholar
Liu B, Mu W, Xie X et al (2015) Enhancing the adsorption capacity of Sr 2+ and Cs + onto hexagonal tungsten oxide by doped niobium. RSC Adv 5:15603–15611. https://doi.org/10.1039/C4RA13161D
CAS
Article
Google Scholar
Chang HY, Sivakumar T, Ok KM, Halasyamani PS (2008) Polar hexagonal tungsten bronze-type oxides: KNbW2O9, RbNbW2O9, and KTaW2O9. Inorg Chem 47:8511–8517. https://doi.org/10.1021/ic800573k
CAS
Article
Google Scholar
Mu W, Yu Q, Li X et al (2017) Efficient removal of Cs+ and Sr2+ from aqueous solution using hierarchically structured hexagonal tungsten trioxide coated Fe3O4. Chem Eng J 319:170–178. https://doi.org/10.1016/j.cej.2017.02.153
CAS
Article
Google Scholar
Zhang X, Wu Y, Wu H, Wei Y (2016) Adsorption behaviors of strontium using macroporous silica based hexagonal tungsten oxide. Sci China Chem 59:601–608. https://doi.org/10.1007/s11426-015-5553-0
CAS
Article
Google Scholar
Luca V, Griffith CS, Drabarek E, Chronis H (2006) Tungsten bronze-based nuclear waste form ceramics. Part 1. Conversion of microporous tungstates to leach resistant ceramics. J Nucl Mater 358:139–150. https://doi.org/10.1016/j.jnucmat.2006.06.017
CAS
Article
Google Scholar
Reis KP, Ramanan A, Whittingham MS (1992) Synthesis of novel compounds with the pyrochlore and hexagonal tungsten bronze structures. J Solid State Chem 96:31–47. https://doi.org/10.1016/S0022-4596(05)80294-4
CAS
Article
Google Scholar
Szilágyi IM, Madarász J, Pokol G et al (2008) Stability and controlled composition of hexagonal WO3. Chem Mater 20:4116–4125. https://doi.org/10.1021/cm800668x
CAS
Article
Google Scholar