Skip to main content

Synthesis and characterization of 3D-printed functionally graded porous titanium alloy

Abstract

This study aims to 3D print titanium alloy constructs incorporating gradient of porosities, from the fully dense core to the porous outer surface. Gradient porous specimens were prepared using selective laser melting (SLM). Fully dense specimens fabricated by SLM were used as the control group. Characterization of samples was done using X-ray tomography, uniaxial compression testing, and optical and scanning electron microscopes. The biocompatibility of fabricated samples was investigated using human periodontal ligament stem cells via assessment of cell attachment, viability, and proliferation by direct and indirect assays. The data were analyzed using ANOVA and Tukey’s post hoc test. Characterization of constructs reveals interconnected gradient porosities and higher contact angle in porous samples. The introduction of porosity leads to a significant decrease in compression strength. However, Young’s modulus of the samples with gradient porosity was more similar to the natural bone modulus. The surface microstructure consists of loosely bonded spherical particles. Biocompatibility of the dense and porous samples is appropriate. Although the porosity size led to a reduced cell proliferation rate in the gradient sample, the extract of the gradient sample results in more cell proliferation than the dense sample’s extract. The study demonstrates that a biocompatible functionally graded porous titanium structure can be well fabricated by SLM, and this structure leads to a good match of Young’s modulus to that of the bone.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Watari F, Yokoyama A, Omori M, Hirai T, Kondo H, Uo M, Kawasaki T (2004) Biocompatibility of materials and development to functionally graded implant for bio-medical application. Compos Sci Technol 64(6):893–908

    Article  CAS  Google Scholar 

  2. Ahuja A, Ahuja V, Singh K (2015) Current concepts of regenerative biomaterials in implant dentistry. J Int Clin Dent Res Organ 7(3):34–39

    Article  Google Scholar 

  3. Saini M, Singh Y, Arora P, Arora V, Jain K (2015) Implant biomaterials: a comprehensive review. World J Clin Cases 3(1):52–57

    Article  Google Scholar 

  4. Brunski JB (1988) Biomaterials and biomechanics in dental implant design. Int J Oral Maxillofac Implants 3(2):85–97

    CAS  Google Scholar 

  5. Deing A, Luthringer B, Laipple D, Ebel T, Willumeit R (2014) A porous TiAl6V4 implant material for medical application. Int J Biomater 2014:8

    Article  CAS  Google Scholar 

  6. Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27(13):2651–2670

    Article  CAS  Google Scholar 

  7. Wally Z, van Grunsven W, Claeyssens F, Goodall R, Reilly G (2015) Porous titanium for dental implant applications. Metals 5(4):1902

    Article  CAS  Google Scholar 

  8. Kelly CN, Evans NT, Irvin CW, Chapman SC, Gall K, Safranski DL (2019) The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti–6Al–4V fabricated by selective laser melting. Mater Sci Eng C 98:726–736

    Article  CAS  Google Scholar 

  9. Bencharit S, Byrd WC, Altarawneh S, Hosseini B, Leong A, Reside G, Morelli T, Offenbacher S (2014) Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants. Clin Implant Dent Relat Res 16(6):817–826

    Article  Google Scholar 

  10. Sing SL, Tey CF, Tan JHK, Huang S, Yeong WY (2020) 2–3D printing of metals in rapid prototyping of biomaterials: techniques in additive manufacturing. In: Narayan R (ed) Rapid prototyping of biomaterials, 2nd edn. Woodhead Publishing, Cambridge, pp 17–40

    Chapter  Google Scholar 

  11. Zhang C, Chen F, Huang Z, Jia M, Chen G, Ye Y, Lin Y, Liu W, Chen B, Shen Q, Zhang L, Lavernia EJ (2019) Additive manufacturing of functionally graded materials: a review. Mater Sci Eng A 764:138209

    Article  CAS  Google Scholar 

  12. Xiong Y, Qian C, Sun J (2012) Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures. Dent Mater J 31(5):815–820

    Article  CAS  Google Scholar 

  13. Wang S, Liu L, Li K, Zhu L, Chen J, Hao Y (2019) Pore functionally graded Ti6Al4V scaffolds for bone tissue engineering application. Mater Des 168:107643

    Article  CAS  Google Scholar 

  14. Wang M, Wu Y, Lu S, Chen T, Zhao Y, Chen H, Tang Z (2016) Fabrication and characterization of selective laser melting printed Ti–6Al–4V alloys subjected to heat treatment for customized implants design. Prog Nat Sci Mater 26(6):671–677

    Article  CAS  Google Scholar 

  15. Fousová M, Vojtěch D, Kubásek J, Jablonská E, Fojt J (2017) Promising characteristics of gradient porosity Ti–6Al–4V alloy prepared by SLM process. J Mech Behav Biomed 69(Supplement C):368–376

    Article  CAS  Google Scholar 

  16. Vaithilingam J, Prina E, Goodridge RD, Hague RJM, Edmondson S, Rose FRAJ, Christie SDR (2016) Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications. Mater Sci Eng C 67(Supplement C):294–303

    Article  CAS  Google Scholar 

  17. Niinomi M (2008) Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed 1(1):30–42

    Article  Google Scholar 

  18. Sidambe AT (2014) Biocompatibility of advanced manufactured titanium implants—a review. Materials 7(12):8168–8188

    Article  Google Scholar 

  19. Zheng Y, Xu X, Xu Z, Wang J, Cai H (eds) (2017) Titanium implants based on additive manufacture. In: Metallic biomaterials: new directions and technologies, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, pp 255–291

  20. Chen WM, Xie Y, Imbalzano G, Shen J, Xu S, Lee S-J, Lee P (2016) Lattice Ti structures with low rigidity but compatible mechanical strength: design of implant materials for trabecular bone. Int J Precis Eng Manuf 17(6):793–799

    Article  Google Scholar 

  21. Nune KC, Kumar A, Misra RDK, Li SJ, Hao YL, Yang R (2017) Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing. Colloid Surf B 150(Supplement C):78–88

    Article  CAS  Google Scholar 

  22. van Grunsven W, Hernandez-Nava E, Reilly GC, Goodall R (2014) Fabrication and mechanical characterisation of titanium lattices with graded porosity. Metals 4(3):401–409

    Article  CAS  Google Scholar 

  23. Zhang Q, Liang Z-l, Cao M, Liu Z-f, Zhang A-f, Lu B-H (2017) Microstructure and mechanical properties of Ti6Al4V alloy prepared by selective laser melting combined with precision forging. Trans Nonferrous Met Soc 27(5):1036–1042

    Article  CAS  Google Scholar 

  24. Amin Yavari S, Wauthle R, van der Stok J, Riemslag AC, Janssen M, Mulier M, Kruth JP, Schrooten J, Weinans H, Zadpoor AA (2013) Fatigue behavior of porous biomaterials manufactured using selective laser melting. Mater Sci Eng C 33(8):4849–4858

    Article  CAS  Google Scholar 

  25. Ahmadi S, Yavari S, Wauthle R, Pouran B, Schrooten J, Weinans H, Zadpoor A (2015) Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: the mechanical and morphological properties. Materials 8(4):1871–1896

    Article  CAS  Google Scholar 

  26. Parthasarathy J, Starly B, Raman S (2011) A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. J Manuf Process 13(2):160–170

    Article  Google Scholar 

  27. Lin CY, Wirtz T, LaMarca F, Hollister SJ (2007) Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. J Biomed Mater Res A 83(2):272–279

    Article  CAS  Google Scholar 

  28. Kim TB, Yue S, Zhang Z, Jones E, Jones JR, Lee PD (2014) Additive manufactured porous titanium structures: through-process quantification of pore and strut networks. J Mater Process Technol 214(11):2706–2715

    Article  CAS  Google Scholar 

  29. Van Bael S, Kerckhofs G, Moesen M, Pyka G, Schrooten J, Kruth J-P (2011) Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater Sci Eng A 528(24):7423–7431

    Article  CAS  Google Scholar 

  30. Kerckhofs G, Schrooten J, Van Cleynenbreugel T, Lomov SV, Wevers M (2008) Validation of x-ray microfocus computed tomography as an imaging tool for porous structures. Rev Sci Instrum 79(1):013711

    Article  CAS  Google Scholar 

  31. Lin WS, Starr TL, Harris BT, Zandinejad A, Morton D (2013) Additive manufacturing technology (direct metal laser sintering) as a novel approach to fabricate functionally graded titanium implants: preliminary investigation of fabrication parameters. Int J Oral Maxillofac Implants 28(6):1490–1495

    Article  Google Scholar 

  32. Traini T, Mangano C, Sammons RL, Mangano F, Macchi A, Piattelli A (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 24(11):1525–1533

    Article  CAS  Google Scholar 

  33. Cheng XY, Li SJ, Murr LE, Zhang ZB, Hao YL, Yang R, Medina F, Wicker RB (2012) Compression deformation behavior of Ti–6Al–4V alloy with cellular structures fabricated by electron beam melting. J Mech Behav Biomed Mater 16(Supplement C):153–162

    Article  CAS  Google Scholar 

  34. Zhang X-Y, Fang G, Leeflang S, Zadpoor AA, Zhou J (2019) Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials. Acta Biomater 84:437–452

    Article  CAS  Google Scholar 

  35. Stanford CM (2008) Surface modifications of dental implants. Aust Dent J 53(Suppl 1):S26–S33

    Article  Google Scholar 

  36. Ben V, Jean-Pierre K (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J 13(4):196–203

    Article  Google Scholar 

  37. Yadroitsev I, Smurov I (2011) Surface morphology in selective laser melting of metal powders. Phys Procedia 12(Part A):264–270

    Article  CAS  Google Scholar 

  38. Vrancken B, Thijs L, Kruth J-P, Van Humbeeck J (2012) Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J Alloys Compd 541(Supplement C):177–185

    Article  CAS  Google Scholar 

  39. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S (2005) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8(3):191–199

    Article  CAS  Google Scholar 

  40. Wieding J, Jonitz A, Bader R (2012) The effect of structural design on mechanical properties and cellular response of additive manufactured titanium scaffolds. Materials 5(8):1336

    Article  CAS  Google Scholar 

  41. Mangano C, De Rosa A, Desiderio V, d’Aquino R, Piattelli A, De Francesco F, Tirino V, Mangano F, Papaccio G (2010) The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials 31(13):3543–3551

    Article  CAS  Google Scholar 

  42. Hindy A, Farahmand F, Tabatabaei FS (2017) In vitro biological outcome of laser application for modification or processing of titanium dental implants. Lasers Med Sci 32(5):1197–1206

    Article  Google Scholar 

  43. de Peppo GM, Palmquist A, Borchardt P, Lenneras M, Hyllner J, Snis A, Lausmaa J, Thomsen P, Karlsson C (2012) Free-form-fabricated commercially pure Ti and Ti6Al4V porous scaffolds support the growth of human embryonic stem cell-derived mesodermal progenitors. Sci World J 2012:646417

    Article  CAS  Google Scholar 

  44. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  CAS  Google Scholar 

  45. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502

    Article  CAS  Google Scholar 

  46. Sobral JM, Caridade SG, Sousa RA, Mano JF, Reis RL (2011) Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater 7(3):1009–1018

    Article  CAS  Google Scholar 

  47. Di Luca A, Ostrowska B, Lorenzo-Moldero I, Lepedda A, Swieszkowski W, Van Blitterswijk C, Moroni L (2016) Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds. Sci Rep 6(1):22898

    Article  CAS  Google Scholar 

  48. Wu J, Mao Z, Tan H, Han L, Ren T, Gao C (2012) Gradient biomaterials and their influences on cell migration. Interface Focus 2(3):337–355

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant from the Iran National Science Foundation (Project No. 95819948). The authors would like to acknowledge the efforts of Mojtaba Javid for designing proposed applications in orthopedics and dental implants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lobat Tayebi or Fahimeh S. Tabatabaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hindy, A., Farahmand, F., Pourdanesh, F. et al. Synthesis and characterization of 3D-printed functionally graded porous titanium alloy. J Mater Sci 55, 9082–9094 (2020). https://doi.org/10.1007/s10853-020-04645-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04645-z