Skip to main content
Log in

Vertically aligned dopamine-reduced graphene oxide with high thermal conductivity for epoxy nanocomposites

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Designing ordered fillers arrangement and superior interfacial adhesion between fillers and matrix can improve the thermal conductivity (TC) of composites. Here, bioinspired dopamine chemistry was firstly used to reduce graphene oxide (GO) and introduce polydopamine nanoparticles on the surface of GO. Then, a well-aligned epoxy/reduced GO films (EP/RGFs) nanocomposites were prepared via the simple vacuum impregnation. Compared with the random distribution of fillers in a traditional blending composite, fillers were selectively distributed in matrix and continuous thermal conductive network structures were constructed in this strategy. As a result, the nanocomposite exhibited a high TC of 0.913 W m−1 K−1 which is 4.8 times higher than pure EP. In addition, curing kinetics showed that RGFs were similar to an amine-type curing agent that reacted with EP and bonded them tightly, and its nanocomposites reaction activation energy is lower than that of pure EP. These results indicated RGFs possessed excellent interface compatibility with EP and suppressing effectively the phonon scattering at the EP–RGFs interface. Cooling experiments showed that nanocomposites can reduce by about 10 °C for a hot source (80 °C), demonstrating it can transfer efficiently heat energy from the heat source. This study provides an effective method for the preparation of high-performance thermal management composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Xu X, Chen J, Zhou J, Li B (2018) Thermal conductivity of polymers and their nanocomposites. Adv Mater 30(17):1705544

    Article  CAS  Google Scholar 

  2. Zhang F, Feng Y, Qin M, Gao L, Li Z, Zhao F et al (2019) Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite. Adv Funct Mater 29:1901383

    Article  CAS  Google Scholar 

  3. Xu Y, Wang X, Zhou J, Song B, Jiang Z, Lee EMY et al (2018) Molecular engineered conjugated polymer with high thermal conductivity. Sci Adv 4(3):eaar3031

    Article  CAS  Google Scholar 

  4. Shanker A, Li C, Kim G-H, Gidley D, Pipe KP, Kim J (2017) High thermal conductivity in electrostatically engineered amorphous polymers. Sci Adv 3(7):e1700342

    Article  CAS  Google Scholar 

  5. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y et al (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85

    Article  CAS  Google Scholar 

  6. Chen J, Huang X, Sun B, Jiang P (2019) Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13(1):337–345

    Article  CAS  Google Scholar 

  7. Yao Y, Zhu X, Zeng X, Sun R, Xu J-B, Wong C-P (2018) Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites. ACS Appl Mater Interfaces 10(11):9669–9678

    Article  CAS  Google Scholar 

  8. Feng Y, Hu J, Xue Y, He C, Zhou X, Xie X et al (2017) Simultaneous improvement in the flame resistance and thermal conductivity of epoxy/Al2O3 composites by incorporating polymeric flame retardant-functionalized graphene. J Mater Chem A 5(26):13544–13556

    Article  CAS  Google Scholar 

  9. Suh D, Moon CM, Kim D, Baik S (2016) Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits. Adv Mater 28(33):7220–7227

    Article  CAS  Google Scholar 

  10. Chen W, Wang Z, Zhi C, Zhang W (2016) High thermal conductivity and temperature probing of copper nanowire/upconversion nanoparticles/epoxy composite. Compos Sci Technol 130:63–69

    Article  CAS  Google Scholar 

  11. Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36(7):914–944

    Article  CAS  Google Scholar 

  12. Wang L, Qiu H, Liang C, Song P, Han Y, Han Y et al (2019) Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon 141:506–514

    Article  CAS  Google Scholar 

  13. Song N, Cao D, Luo X, Guo Y, Gu J, Ding P (2018) Aligned cellulose/nanodiamond plastics with high thermal conductivity. J Mater Chem C 6(48):13108–13113

    Article  CAS  Google Scholar 

  14. Liu Y, Lu M, Wu K, Yao S, Du X, Chen G et al (2019) Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@Fe3O4. Compos Sci Technol 174:1–10

    Article  CAS  Google Scholar 

  15. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581

    Article  CAS  Google Scholar 

  16. Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT et al (2010) Two-dimensional phonon transport in supported graphene. Science 328(5975):213–216

    Article  CAS  Google Scholar 

  17. Xin G, Yao T, Sun H, Scott SM, Shao D, Wang G et al (2015) Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252):1083–1087

    Article  CAS  Google Scholar 

  18. He Q, Wu S, Gao S, Cao X, Yin Z, Li H et al (2011) Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5(6):5038–5044

    Article  CAS  Google Scholar 

  19. Qi X, Pu K-Y, Zhou X, Li H, Liu B, Boey F et al (2010) Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents. Small 6(5):663–669

    Article  CAS  Google Scholar 

  20. Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C (2017) Ultrahigh thermal conductive yet superflexible graphene films. Adv Mater 29(27):1700589

    Article  CAS  Google Scholar 

  21. Liu ZQ, Peng PR, Liu ZH, Fang W, Zhou QZ, Liu XQ et al (2018) Electric-field-induced out-of-plane alignment of clay in poly (dimethylsiloxane) with enhanced anisotropic thermal conductivity and mechanical properties. Compos Sci Technol 165:39–47

    Article  CAS  Google Scholar 

  22. Foley BM, Wallace M, Gaskins JT, Paisley EA, Johnson-Wilke RL, Kim JW et al (2018) Voltage-controlled bistable thermal conductivity in suspended ferroelectric thin-film membranes. ACS Appl Mater Interfaces 10(30):25493–25501

    Article  CAS  Google Scholar 

  23. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  CAS  Google Scholar 

  24. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  25. Dong L, Hu C, Song L, Huang X, Chen N, Qu L, Large-Area A (2016) Flexible, and flame-retardant graphene paper. Adv Funct Mater 26(9):1470–1476

    Article  CAS  Google Scholar 

  26. Shin H-J, Kim KK, Benayad A, Yoon S-M, Park HK, Jung I-S et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19(12):1987–1992

    Article  CAS  Google Scholar 

  27. Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46(7):1112–1114

    Article  CAS  Google Scholar 

  28. Xu LQ, Yang WJ, Neoh K-G, Kang E-T, Fu GD (2010) Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules 43(20):8336–8339

    Article  CAS  Google Scholar 

  29. Cao Y, Zhao YJ, Wang YX, Zhang Y, Wen JG, Zhao ZR et al (2019) Reduction degree regulated room-temperature terahertz direct detection based on fully suspended and low-temperature thermally reduced graphene oxides. Carbon 144:193–201

    Article  CAS  Google Scholar 

  30. Ning N, Ma Q, Liu S, Tian M, Zhang L, Nishi T (2015) Tailoring dielectric and actuated properties of elastomer composites by bioinspired poly(dopamine) encapsulated graphene oxide. ACS Appl Mater Interfaces 7(20):10755–10762

    Article  CAS  Google Scholar 

  31. Kaminska I, Das MR, Coffinier Y, Niedziolka-Jonsson J, Sobczak J, Woisel P et al (2012) Reduction and functionalization of graphene oxide sheets using biomimetic dopamine derivatives in one step. ACS Appl Mater Interfaces 4(2):1016–1020

    Article  CAS  Google Scholar 

  32. De Silva KKH, Huang HH, Joshi RK, Yoshimura M (2017) Chemical reduction of graphene oxide using green reductants. Carbon 119:190–199

    Article  CAS  Google Scholar 

  33. Dubin S, Gilje S, Wang K, Tung VC, Cha K, Hall AS et al (2010) A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 4(7):3845–3852

    Article  CAS  Google Scholar 

  34. Wang X, Song L, Yang H, Xing W, Kandola B, Hua Y (2012) Simultaneous reduction and surface functionalization of graphene oxide with POSS for reducing fire hazards in epoxy composites. J Mater Chem 22(41):22037–22043

    Article  CAS  Google Scholar 

  35. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A et al (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  36. Chen Y, Poetschke P, Pionteck J, Voit B, Qi H (2018) Smart cellulose/graphene composites fabricated by in situ chemical reduction of graphene oxide for multiple sensing applications. J Mater Chem A 6(17):7777–7785

    Article  CAS  Google Scholar 

  37. Zhu B, Edmondson S (2011) Polydopamine-melanin initiators for surface-initiated ATRP. Polymer 52(10):2141–2149

    Article  CAS  Google Scholar 

  38. Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW (2012) Elucidating the structure of poly(dopamine). Langmuir 28(15):6428–6435

    Article  CAS  Google Scholar 

  39. Lerf A, He HY, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482

    Article  CAS  Google Scholar 

  40. Lu M, Liu Y, Du X, Zhang S, Chen G, Zhang Q et al (2019) Cure kinetics and properties of high performance cycloaliphatic epoxy resins cured with anhydride. Ind Eng Chem Res 58(16):6907–6918

    Article  CAS  Google Scholar 

  41. Antonelou A, Sygellou L, Vrettos K, Georgakilas V, Yannopoulos SN (2018) Efficient defect healing and ultralow sheet resistance of laser-assisted reduced graphene oxide at ambient conditions. Carbon 139:492–499

    Article  CAS  Google Scholar 

  42. Kim HG, Oh I-K, Lee S, Jeon S, Choi H, Kim K et al (2019) Analysis of defect recovery in reduced graphene oxide and its application as a heater for self-healing polymers. ACS Appl Mater Interfaces 11(18):16804–16814

    Article  CAS  Google Scholar 

  43. Sun Y, Wang S, Li M, Gu Y, Zhang Z (2018) Improvement of out-of-plane thermal conductivity of composite laminate by electrostatic flocking. Mater Des 144:263–270

    Article  CAS  Google Scholar 

  44. An F, Li X, Min P, Liu P, Jiang Z-G, Yu Z-Z (2018) Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl Mater Interfaces 10(20):17383–17392

    Article  CAS  Google Scholar 

  45. Shen Z, Feng J (2019) Achieving vertically aligned SiC microwires networks in a uniform cold environment for polymer composites with high through-plane thermal conductivity enhancement. Compos Sci Technol 170:135–140

    Article  CAS  Google Scholar 

  46. Yousefi A, Lafleur PG, Gauvin R (1997) Kinetic studies of thermoset cure reactions: a review. Polym Compos 18(2):157–168

    Article  CAS  Google Scholar 

  47. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706

    Article  CAS  Google Scholar 

  48. Zheng Q, Zhang Y, Montazerian M, Gulbiten O, Mauro JC, Zanotto ED et al (2019) Understanding glass through differential scanning calorimetry. Chem Rev 119(13):7848–7939

    Article  CAS  Google Scholar 

  49. Li W, Shang T, Yang W, Yang H, Lin S, Jia X et al (2016) Effectively exerting the reinforcement of dopamine reduced graphene oxide on epoxy-based composites via strengthened interfacial bonding. ACS Appl Mater Interfaces 8(20):13037–13050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2017YFD0601003) and Science and Technology Planning Project of Guangzhou (201707010274, 201904010244).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Wu or Liyan Liang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file2 (MP4 18275 kb)

Supplementary file1 (DOCX 2838 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wu, K., Lu, M. et al. Vertically aligned dopamine-reduced graphene oxide with high thermal conductivity for epoxy nanocomposites. J Mater Sci 55, 8917–8929 (2020). https://doi.org/10.1007/s10853-020-04639-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04639-x

Navigation