Skip to main content

Advertisement

Log in

Crystallization behavior of amorphous BaTiO3 thin films

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The crystallization behavior of amorphous barium titanate (BaTiO3) thin films was studied as a function of annealing temperature from 500 to 1000 °C. Quantitative phase analysis by grazing incidence X-ray diffractometry revealed that the metastable hexagonal phase preferentially nucleates at lower temperatures with a transition to stable cubic nuclei at higher temperatures. The predominance of the metastable hexagonal-phase nucleation at lower temperatures suggests that it has the lowest nucleation barrier, in accordance with the Ostwald’s step rule. To help induce the nucleation of the cubic phase at lower temperatures, we explored the effects of electric fields on the crystallization behavior and found that direct-current fields moderately enhanced the cubic phase fraction in the 500–700 °C temperature range. Although the nucleation barrier of the cubic phase in the presence of an electric should be lowered more significantly with respect to that of the hexagonal phase because of the former’s higher relative permittivity, the effect arising from the change in volume free energy should only become significant at electric field strengths in the range of MV cm−1, an order of magnitude higher than the experimentally accessible fields in the present study. This suggests alternative, perhaps interface-mediated, mechanisms by which the electric field modifies the nucleation behavior of BaTiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ihlefeld JF, Borland WJ, Maria J-P (2007) Enhanced dielectric and crystalline properties in ferroelectric barium titanate thin films. Adv Funct Mater 17:1199–1203. https://doi.org/10.1002/adfm.200601159

    Article  CAS  Google Scholar 

  2. Harris DT, Burch MJ, Ihlefeld JF et al (2013) Realizing strain enhanced dielectric properties in BaTiO3 films by liquid phase assisted growth. Appl Phys Lett 103:012904–1–012904–5. https://doi.org/10.1063/1.4813270

    Article  CAS  Google Scholar 

  3. Harris DT, Burch MJ, Mily EJ et al (2016) Microstructure and dielectric properties with CuO additions to liquid phase sintered BaTiO3 thin films. J Mater Res 31:1018–1026. https://doi.org/10.1557/jmr.2016.89

    Article  CAS  Google Scholar 

  4. Kashchiev D (1972) On the influence of the electric field on nucleation kinetics. Philos Mag 25:459–470. https://doi.org/10.1080/14786437208226816

    Article  CAS  Google Scholar 

  5. Isard JO (1977) Calculation of the influence of an electric field on the free energy of formation of a nucleus. Philos Mag 35:817–819. https://doi.org/10.1080/14786437708236010

    Article  CAS  Google Scholar 

  6. Orlowska M, Havet M, Le-Bail A (2009) Controlled ice nucleation under high voltage DC electrostatic field conditions. Food Res Int 42:879–884. https://doi.org/10.1016/j.foodres.2009.03.015

    Article  Google Scholar 

  7. Nardone M, Karpov VG, Jackson DCS, Karpov IV (2009) A unified model of nucleation switching. Appl Phys Lett 94:103509–1–103509–3. https://doi.org/10.1063/1.3100779

    Article  CAS  Google Scholar 

  8. Gu XM, Liu W, Liang KM (2000) The effect of electric field on phase separation in glasses: a model and experimental testing. Mater Sci Eng A 278:22–26. https://doi.org/10.1016/s0921-5093(99)00609-7

    Article  Google Scholar 

  9. Liu W, Liang KM, Zheng YK et al (1997) The effect of an electric field on the phase separation of glasses. J Phys D Appl Phys 30:3366–3370. https://doi.org/10.1088/0022-3727/30/24/016

    Article  CAS  Google Scholar 

  10. Lee S, Randall CA, Liu ZK (2007) Modified phase diagram for the barium oxide-titanium dioxide system for the ferroelectric barium titanate. J Am Ceram Soc 90:2589–2594. https://doi.org/10.1111/j.1551-2916.2007.01794.x

    Article  CAS  Google Scholar 

  11. Kim S, Hishita S (1997) Preparation and characterization of BaTiO3 thin films on MgO-buffered Si(100) substrates by RF sputtering. J Mater Res 12:1152–1159. https://doi.org/10.1557/JMR.1997.0159

    Article  Google Scholar 

  12. Appleby DJR, Ponon NK, Kwa KSK et al (2014) Ferroelectric properties in thin film barium titanate grown using pulsed laser deposition. J Appl Phys 116:124105–1–124105–6. https://doi.org/10.1063/1.4895050

    Article  CAS  Google Scholar 

  13. Akimoto J, Gotoh Y, Oosawa Y (1994) Refinement of hexagonal BaTiO3. Acta Crystallogr Sect C Cryst Struct Commun 50:160–161. https://doi.org/10.1107/s0108270193008637

    Article  Google Scholar 

  14. Chung SY, Kim YM, Kim JG, Kim YJ (2009) Multiphase transformation and Ostwalds rule of stages during crystallization of a metal phosphate. Nat Phys 5:68–73. https://doi.org/10.1038/nphys1148

    Article  CAS  Google Scholar 

  15. Nývlt J (1995) The ostwald rule of stages. Cryst Res Technol 30:443–449. https://doi.org/10.1002/crat.2170300402

    Article  Google Scholar 

  16. Kashchiev D (2000) Chapter 21. Electric field. In: Nucleation. Elsevier, pp 315–329

  17. Wagner KW (1914) Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen. Arch für Elektrotechnik 2:371–387

    Article  Google Scholar 

  18. Van Beck LKH (1967) Dielectric behaviour of heterogeneous systems. In: Birks JB (ed) Progress in dielectrics. Heywood Books, London, pp 69–114

    Google Scholar 

  19. Grossman DG, Isard JO (1970) The application of dielectric mixtures formulae to glass—ceramic systems. J Phys D Appl Phys 3:1058–1067. https://doi.org/10.1088/0022-3727/3/7/309

    Article  CAS  Google Scholar 

  20. Lee KJ, Lee CH, Lee GW et al (2012) Thermophysical properties of BaTiO3 ceramics prepared by aerodynamic levitation. Thermochim Acta 542:37–41. https://doi.org/10.1016/j.tca.2011.08.010

    Article  CAS  Google Scholar 

  21. Vegiri A, Schevkunov SV (2001) A molecular dynamics study of structural transitions in small water clusters in the presence of an external electric field. J Chem Phys 115:4175–4185. https://doi.org/10.1063/1.1388545

    Article  CAS  Google Scholar 

  22. Wei S, Xiaobin X, Hong Z, Chuanxiang X (2008) Effects of dipole polarization of water molecules on ice formation under an electrostatic field. Cryobiology 56:93–99. https://doi.org/10.1016/j.cryobiol.2007.10.173

    Article  CAS  Google Scholar 

  23. Hozumi T, Saito A, Okawa S, Watanabe K (2003) Effects of electrode materials on freezing of supercooled water in electric freeze control. Int J Refrig 26:537–542. https://doi.org/10.1016/S0140-7007(03)00008-2

    Article  CAS  Google Scholar 

  24. Hozumi T, Saito A, Okawa S, Eshita Y (2005) Effects of shapes of electrodes on freezing of supercooled water in electric freeze control. Int J Refrig 28:389–395. https://doi.org/10.1016/j.ijrefrig.2004.08.009

    Article  CAS  Google Scholar 

  25. Testino A, Buscaglia V, Buscaglia MT et al (2005) Kinetic modeling of aqueous and hydrothermal synthesis of barium titanate (BaTiO3). Chem Mater 17:5346–5356. https://doi.org/10.1021/cm051119f

    Article  CAS  Google Scholar 

  26. Golego N, Studenikin SA, Cocivera M (1998) Properties of dielectric BaTiO3 thin films prepared by spray pyrolysis. Chem Mater 10:2000–2005. https://doi.org/10.1021/cm980153+

    Article  CAS  Google Scholar 

  27. Lee B, Zhang J (2001) Preparation, structure evolution and dielectric properties of BaTiO3 thin films and powders by an aqueous sol-gel process. Thin Solid Films 388:107–113. https://doi.org/10.1016/S0040-6090(01)00816-1

    Article  CAS  Google Scholar 

  28. Hashemizadeh S, Biancoli A, Damjanovic D (2016) Symmetry breaking in hexagonal and cubic polymorphs of BaTiO3. J Appl Phys 119:094–105. https://doi.org/10.1063/1.4942855

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed in part at the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation (award number ECCS-1542015). The AIF is a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), a site in the National Nanotechnology Coordinated Infrastructure (NNCI). This work was partially supported by the II–VI Foundation under the Block-Gift Program. GNK and J-PM acknowledge support from NSF Ceramics, award 1610844.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth C. Dickey.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, G.H., Lewis, N.P., Kotsonis, G.N. et al. Crystallization behavior of amorphous BaTiO3 thin films. J Mater Sci 55, 8793–8801 (2020). https://doi.org/10.1007/s10853-020-04637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04637-z

Navigation