Highly stretchable CNT/MnO2 nanosheets fiber supercapacitors with high energy density


Fiber-shaped supercapacitors (FSSCs) are promising devices in the wearable electronics because of their good flexibility, weavability, tiny volume and lightweight. However, the low stretchability and energy density limit their practical applications on wearable electronics requiring deformation and high energy density. It remains challenging to increase the energy densities of FSSCs without sacrificing their stretchability. Herein, we design and construct a wearable, stretchable and high-energy density CNT/MnO2 nanosheets FSSCs by wrapping the fiber supercapacitors on the spandex yarn. The CNT/MnO2 FSSCs show high stretchability up to 80%, ultrahigh capacitances of 685 mF cm−2 and energy density of 15.2 μWh cm−2. Furthermore, the CNT/MnO2 FSSCs have the good flexibility, stability and ultralong cycle life. In addition, we also develop the in situ characterization strategy to evaluate the structure evolution during the stretching process of the CNT/MnO2 FSSCs for better understanding the structure evolution of stretchable FSSCs. This work paves the way for the high-performance stretchable energy storage devices.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6


  1. 1

    Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y (2018) Advanced carbon for flexible and wearable electronics. Adv Mater 31:@@1801072@@

    Article  CAS  Google Scholar 

  2. 2

    Koo JH, Kim DC, Shim HJ, Kim TH, Kim DH (2018) Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv Funct Mater 28(35):@@1801834@@

    Article  CAS  Google Scholar 

  3. 3

    Zeng W, Shu L, Li Q, Chen S, Wang F, Tao X-M (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26(31):5310–5336

    CAS  Article  Google Scholar 

  4. 4

    Sun H, Zhang Y, Zhang J, Sun X, Peng H (2017) Energy harvesting and storage in 1D devices. Nat Rev Mater 2(6):@@17023@@

    CAS  Article  Google Scholar 

  5. 5

    Noh J, Yoon C-M, Kim YK, Jang J (2017) High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3. Carbon 116:470–478

    CAS  Article  Google Scholar 

  6. 6

    Wu X, Han Z, Zheng X, Yao S, Yang X, Zhai T (2017) Core–shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 31:410–417

    CAS  Article  Google Scholar 

  7. 7

    Zheng X, Zhang K, Yao L, Qiu Y, Wang S (2018) Hierarchically porous sheath–core graphene-based fiber-shaped supercapacitors with high energy density. J Mater Chem A 6(3):896–907

    CAS  Article  Google Scholar 

  8. 8

    Zhao X, Zheng B, Huang T, Gao C (2015) Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale 7(21):9399–9404

    CAS  Article  Google Scholar 

  9. 9

    Zhang Q, Wang X, Pan Z, Sun J, Zhao J, Zhang J, Zhang C, Tang L, Luo J, Song B, Zhang Z, Lu W, Li Q, Zhang Y, Yao Y (2017) Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett 17(4):2719–2726

    CAS  Article  Google Scholar 

  10. 10

    Sun H, You X, Deng J, Chen X, Yang Z, Ren J, Peng H (2014) Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv Mater 26(18):2868–2873

    CAS  Article  Google Scholar 

  11. 11

    Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014) Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotechnol 9(7):555–562

    CAS  Article  Google Scholar 

  12. 12

    De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539

    Article  CAS  Google Scholar 

  13. 13

    Wang K, Meng Q, Zhang Y, Wei Z, Miao M (2013) High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater 25(10):1494–1498

    CAS  Article  Google Scholar 

  14. 14

    Su F, Lv X, Miao M (2015) High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanoparticles. Small 11(7):854–861

    CAS  Article  Google Scholar 

  15. 15

    Khandoker N, Hawkins SC, Ibrahim R, Huynh CP, Deng F (2011) Tensile strength of spinnable multiwall carbon nanotubes. Procedia Eng 10:2572–2578

    CAS  Article  Google Scholar 

  16. 16

    Kou L, Huang T, Zheng B, Han Y, Zhao X, Gopalsamy K, Sun H, Gao C (2014) Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun 5:@@3754@@

    CAS  Article  Google Scholar 

  17. 17

    Choi C, Lee JA, Choi AY, Kim YT, Lepró X, Lima MD, Baughman RH, Kim SJ (2014) Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv Mater 26(13):2059–2065

    CAS  Article  Google Scholar 

  18. 18

    Ren J, Bai W, Guan G, Zhang Y, Peng H (2013) Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv Mater 25(41):5965–5970

    CAS  Article  Google Scholar 

  19. 19

    Ren J, Li L, Chen C, Chen X, Cai Z, Qiu L, Wang Y, Zhu X, Peng H (2013) Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv Mater 25(8):1155–1159

    CAS  Article  Google Scholar 

  20. 20

    Cheng G, Yang W, Dong C, Kou T, Bai Q, Wang H, Zhang Z (2015) Ultrathin mesoporous NiO nanosheet-anchored 3D nickel foam as an advanced electrode for supercapacitors. J Mater Chem A 3(33):17469–17478

    CAS  Article  Google Scholar 

  21. 21

    Li S, Qi L, Lu L, Wang H (2012) Facile preparation and performance of mesoporous manganese oxide for supercapacitors utilizing neutral aqueous electrolytes. RSC Adv 2(8):3298–3308

    CAS  Article  Google Scholar 

  22. 22

    Naoi K, Simon P (2008) New materials and new configurations for advanced electrochemical capacitors. J Electrochem Soc 17(1):34–37

    CAS  Google Scholar 

  23. 23

    Singu BS, Yoon KR (2017) Synthesis and characterization of MnO2-decorated graphene for supercapacitors. Electrochim Acta 231:749–758

    CAS  Article  Google Scholar 

  24. 24

    Yin X, Tang C, Zhang L, Yu ZG, Gong H (2016) Chemical insights into the roles of nanowire cores on the growth and supercapacitor performances of Ni–Co–O/Ni(OH)2 core/shell electrodes. Sci Rep 6(1):1–12

    Article  CAS  Google Scholar 

  25. 25

    Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144(1):220–223

    CAS  Article  Google Scholar 

  26. 26

    Choi C, Sim HJ, Spinks GM, Lepró X, Baughman RH, Kim SJ (2016) Elastomeric and dynamic MnO2/CNT core–shell structure coiled yarn supercapacitor. Adv Energy Mater 6(5):@@1502119@@

    Article  CAS  Google Scholar 

  27. 27

    Yang Z, Deng J, Chen X, Ren J, Peng H (2013) A highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Ed 52(50):13453–13457

    CAS  Article  Google Scholar 

  28. 28

    Chen T, Hao R, Peng H, Dai L (2015) High-performance, stretchable, wire-shaped supercapacitors. Angew Chem Int Ed 54(2):618–622

    CAS  Google Scholar 

  29. 29

    Xu J, Ding J, Zhou X, Zhang Y, Zhu W, Liu Z, Ge S, Yuan N, Fang S, Baughman RH (2017) Enhanced rate performance of flexible and stretchable linear supercapacitors based on polyaniline@Au@carbon nanotube with ultrafast axial electron transport. J Power Sources 340:302–308

    CAS  Article  Google Scholar 

  30. 30

    Zhang Z, Deng J, Li X, Yang Z, He S, Chen X, Guan G, Ren J, Peng H (2015) Superelastic supercapacitors with high performances during stretching. Adv Mater 27(2):356–362

    CAS  Article  Google Scholar 

  31. 31

    Choi C, Kim JH, Sim HJ, Di J, Baughman RH, Kim SJ (2017) Microscopically buckled and macroscopically coiled fibers for ultra-stretchable supercapacitors. Adv Energy Mater 7(6):@@1602021@@

    Article  CAS  Google Scholar 

  32. 32

    Shang Y, Wang C, He X, Li J, Peng Q, Shi E, Wang R, Du S, Cao A, Li Y (2015) Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions. Nano Energy 12:401–409

    CAS  Article  Google Scholar 

  33. 33

    Yu J, Lu W, Smith JP, Booksh KS, Meng L, Huang Y, Li Q, Byun J-H, Oh Y, Yan Y, Chou T-W (2017) A high performance stretchable asymmetric fiber-shaped supercapacitor with a core–sheath helical structure. Adv Energy Mater 7(3):@@1600976@@

    Article  CAS  Google Scholar 

  34. 34

    Xu P, Gu T, Cao Z, Wei B, Yu J, Li F, Byun J-H, Lu W, Li Q, Chou T-W (2014) Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv Energy Mater 4(3):@@1300759@@

    Article  CAS  Google Scholar 

  35. 35

    Liu P, Zhu Y, Gao X, Huang Y, Wang Y, Qin S, Zhang Y (2018) Rational construction of bowl-like MnO2 nanosheets with excellent electrochemical performance for supercapacitor electrodes. Chem Eng J 350:79–88

    CAS  Article  Google Scholar 

  36. 36

    Li K, Feng S, Jing C, Chen Y, Liu X, Zhang Y, Zhou L (2019) Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chem Commun 55(91):13773–13776

    CAS  Article  Google Scholar 

  37. 37

    Li K, Liu X, Zheng T, Jiang D, Zhou Z, Liu C, Zhang X, Zhang Y, Losic D (2019) Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chem Eng J 370:136–147

    CAS  Article  Google Scholar 

  38. 38

    Huang Y, Lu J, Kang S, Weng D, Han L, Wang Y (2019) Synthesis and application of MnO2/PANI/MWCNT ternary nanocomposite as an electrode material for supercapacitors. Int J Electrochem Sci 14:9298–9310

    CAS  Article  Google Scholar 

  39. 39

    Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700):1358–1361

    CAS  Article  Google Scholar 

  40. 40

    Zheng X, Yao L, Qiu Y, Wang S, Zhang K (2019) Core–sheath porous polyaniline nanorods/graphene fiber-shaped supercapacitors with high specific capacitance and rate capability. ACS Appl Energy Mater 2(6):4335–4344

    CAS  Article  Google Scholar 

  41. 41

    Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112(11):4406–4417

    CAS  Article  Google Scholar 

  42. 42

    Dravid VP, Liu S, Kappes MM (1991) Transmission electron microscopy of chromatographically purified solid state C60 and C70. Chem Phys Lett 185(1):75–81

    CAS  Article  Google Scholar 

  43. 43

    Rossi LM, Silva FP, Vono LL, Kiyohara PK, Duarte EL, Itri R, Landers R, Machado G (2007) Superparamagnetic nanoparticle-supported palladium: a highly stable magnetically recoverable and reusable catalyst for hydrogenation reactions. Green Chem 9(4):379–385

    CAS  Article  Google Scholar 

  44. 44

    Liu Z, Xu K, Sun H, Yin S (2015) One-step synthesis of single-layer MnO2 nanosheets with multi-role sodium dodecyl sulfate for high-performance pseudocapacitors. Small 11(18):2182–2191

    CAS  Article  Google Scholar 

  45. 45

    Kim SH, Haines CS, Li N, Kim KJ, Mun TJ, Choi C, Di J, Oh YJ, Oviedo JP, Bykova J (2017) Harvesting electrical energy from carbon nanotube yarn twist. Science 357(6353):773–778

    CAS  Article  Google Scholar 

  46. 46

    Foroughi J, Spinks GM, Antiohos D, Mirabedini A, Gambhir S, Wallace GG, Ghorbani SR, Peleckis G, Kozlov ME, Lima MD (2014) Highly conductive carbon nanotube-graphene hybrid yarn. Adv Funct Mater 24(37):5859–5865

    CAS  Article  Google Scholar 

  47. 47

    Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45(21):5925–5950

    CAS  Article  Google Scholar 

  48. 48

    Liu J-h, Xu X-y, Lu W, Xiong X, Ouyang X, Zhao C, Wang F, Qin S-y, Hong J-l, Tang J-n (2018) A high performance all-solid-state flexible supercapacitor based on carbon nanotube fiber/carbon nanotubes/polyaniline with a double core–sheathed structure. Electrochim Acta 283:366–373

    CAS  Article  Google Scholar 

  49. 49

    Choi C, Kim KM, Kim KJ, Lepró X, Spinks GM, Baughman RH, Kim SJ (2016) Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors. Nat Commun 7(1):1–8

    Google Scholar 

  50. 50

    Lee JA, Shin MK, Kim SH, Cho HU, Spinks GM, Wallace GG, Lima MD, Lepró X, Kozlov ME, Baughman RH (2013) Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun 4:@@1970@@

    Article  CAS  Google Scholar 

  51. 51

    Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H (2016) A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater 28(19):3646–3652

    CAS  Article  Google Scholar 

  52. 52

    Huang M, Wang L, Chen S, Kang L, Lei Z, Shi F, Xu H, Liu Z-H (2017) Highly flexible all-solid-state cable-type supercapacitors based on Cu/reduced graphene oxide/manganese dioxide fibers. RSC Adv 7(17):10092–10099

    CAS  Article  Google Scholar 

  53. 53

    Li H, Liang J, Li H, Zheng X, Tao Y, Huang Z-H, Yang Q-H (2019) Activated carbon fibers with manganese dioxide coating for flexible fiber supercapacitors with high capacitive performance. J Energy Chem 31:95–100

    Article  Google Scholar 

  54. 54

    Xie S, Liu S, Cheng F, Lu X (2018) Recent advances toward achieving high-performance carbon-fiber materials for supercapacitors. Chemelectrochem 5(4):571–582

    CAS  Article  Google Scholar 

  55. 55

    Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z, Shi G, Qu L (2013) All-graphene core–sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25(16):2326–2331

    CAS  Article  Google Scholar 

  56. 56

    Cai W, Lai T, Ye J (2015) A spinneret as the key component for surface-porous graphene fibers in high energy density micro-supercapacitors. J Mater Chem A 3(9):5060–5066

    CAS  Article  Google Scholar 

  57. 57

    Xiao X, Li T, Yang P, Gao Y, Jin H, Ni W, Zhan W, Zhang X, Cao Y, Zhong J (2012) Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6(10):9200–9206

    CAS  Article  Google Scholar 

  58. 58

    El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330

    CAS  Article  Google Scholar 

  59. 59

    Guo F, Xu R, Cui X, Zhang L, Wang K, Yao Y, Wei J (2016) High performance of stretchable carbon nanotube–polypyrrole fiber supercapacitors under dynamic deformation and temperature variation. J Mater Chem A 4(23):9311–9318

    CAS  Article  Google Scholar 

  60. 60

    Li M, Zu M, Yu J, Cheng H, Li Q (2017) Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes. Small 13(12):@@1602994@@

    Article  CAS  Google Scholar 

  61. 61

    Choi C, Lee JM, Kim SH, Kim SJ, Di J, Baughman RH (2016) Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett 16(12):7677–7684

    CAS  Article  Google Scholar 

  62. 62

    Sun J, Huang Y, Fu C, Wang Z, Huang Y, Zhu M, Zhi C, Hu H (2016) High-performance stretchable yarn supercapacitor based on PPy@ CNTs@ urethane elastic fiber core spun yarn. Nano Energy 27:230–237

    CAS  Article  Google Scholar 

  63. 63

    Zhang Q, Sun J, Pan Z, Zhang J, Zhao J, Wang X, Zhang C, Yao Y, Lu W, Li Q (2017) Stretchable fiber-shaped asymmetric supercapacitors with ultrahigh energy density. Nano Energy 39:219–228

    CAS  Article  Google Scholar 

  64. 64

    Xu P, Wei B, Cao Z, Zheng J, Gong K, Li F, Yu J, Li Q, Lu W, Byun J-H (2015) Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers. ACS Nano 9(6):6088–6096

    CAS  Article  Google Scholar 

  65. 65

    Chen X, Qiu L, Ren J, Guan G, Lin H, Zhang Z, Chen P, Wang Y, Peng H (2013) Novel electric double-layer capacitor with a coaxial fiber structure. Adv Mater 25(44):6436–6441

    CAS  Article  Google Scholar 

  66. 66

    Choi C, Kim SH, Sim HJ, Lee JA, Choi AY, Kim YT, Lepró X, Spinks GM, Baughman RH, Kim SJ (2015) Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors. Sci Rep 5:@@9387@@

    CAS  Article  Google Scholar 

Download references


The authors thank the China Scholarship Council for the help. This work was supported by the National Key Research and Development Program of China (2017YFB0307001), the National Natural Science Foundation of China (91648109), Research funding from Anhui Polytechnic University (2020YQQ002, Xjky03201905, Xjky03201907).

Author information



Corresponding authors

Correspondence to Xianhong Zheng or Ningyi Yuan.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3141 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Zhou, X., Xu, J. et al. Highly stretchable CNT/MnO2 nanosheets fiber supercapacitors with high energy density. J Mater Sci 55, 8251–8263 (2020). https://doi.org/10.1007/s10853-020-04608-4

Download citation