Skip to main content
Log in

Enhanced H2S gas sensing properties by the optimization of p-CuO/n-ZnO composite nanofibers

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recently, metal oxide nanomaterials-based gas sensors have been widely applied in the detection of hydrogen sulfide (H2S). In this work, the optimal composition of CuO and ZnO in CuO/ZnO nanofibers (CZ NFs) gas sensor to improve its gas sensing performances has been first proposed. In this work, pure CuO NFs and CZ composite NFs with different molar ratios were prepared by the facile electrospinning method. A series of detection was carried out to examine the gas sensing performances of pure CuO NFs and CZ NFs. The results indicated that the CZ4 (CuO/ZnO = 1:2) NFs sensor achieved the highest response (31.472 ± 0.7997) toward 50 ppm H2S gas at 180 °C compared with other sensors fabricated in this experiment. The gas sensing mechanism of pure CuO and CZ NFs sensors was described in detail. The results indicated that the H2S sensing performances of CZ NFs could be effectively improved by optimizing the composition of CZ NFs. Furthermore, the p–n junctions between ZnO and CuO in the CZ NFs also played an important role to enhance the response of CZ composites NFs toward H2S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Kim J-H, Mirzaei A, Zheng Y, Lee J-H, Kim J-Y, Kim HW, Kim SS (2019) Enhancement of H2S sensing performance of p-CuO nanofibers by loading p-reduced graphene oxide nanosheets. Sens Actuators B Chem 281:453–461

    Article  CAS  Google Scholar 

  2. He M, Xie L, Zhao X, Hu X, Li S, Zhu Z-G (2019) Highly sensitive and selective H2S gas sensors based on flower-like WO3/CuO composites operating at low/room temperature. J Alloys Compd 788:36–43

    Article  CAS  Google Scholar 

  3. Han C, Li X, Shao C, Li X, Ma J, Zhang X, Liu Y (2019) Composition-controllable p-CuO/n-ZnO hollow nanofibers for high-performance H2S detection. Sens Actuators B Chem 285:495–503

    Article  CAS  Google Scholar 

  4. Wang Y, Qu F, Liu J, Wang Y, Zhou J, Ruan S (2015) Enhanced H2S sensing characteristics of CuO–NiO core-shell microspheres sensors. Sens Actuators B Chem 209:515–523

    Article  CAS  Google Scholar 

  5. Zhou H, Wen J-Q, Zhang X-Z, Wang W, Feng D-Q, Wang Q, Jia F (2014) Study on fiber-optic hydrogen sulfide gas sensor. Phys Proc 56:1102–1106

    Article  CAS  Google Scholar 

  6. Wang Y, Yan H, Wang E (2002) Solid polymer electrolyte-based hydrogen sulfide sensor. Sens Actuators B Chem 87:115–121

    Article  CAS  Google Scholar 

  7. Gao C, Lin Z-D, Li N, Fu P, Wang X-H (2015) Preparation and H2S gas-sensing performances of coral-like SnO2–CuO nanocomposite. Acta Metall Sin (Engl Lett) 28:1190–1197

    Article  CAS  Google Scholar 

  8. Lee J-H, Kim J-H, Kim SS (2018) CuO–TiO2 p–n core-shell nanowires: sensing mechanism and p/n sensing-type transition. Appl Surf Sci 448:489–497

    Article  CAS  Google Scholar 

  9. Ramgir NS, Ganapathi SK, Kaur M, Datta N, Muthe KP, Aswal DK, Gupta SK, Yakhmi JV (2010) Sub-ppm H2S sensing at room temperature using CuO thin films. Sens Actuators B Chem 151:90–96

    Article  CAS  Google Scholar 

  10. Seyama M, Iwasaki Y, Ogawa S, Sugimoto I, Tate A, Niwa O (2005) Discriminative detection of volatile sulfur compound mixtures with a plasma-polymerized film-based sensor array installed in a humidity-control system. Anal Chem 77:4228–4234

    Article  CAS  Google Scholar 

  11. Kramer KE, Rose-Pehrsson SL, Hammond MH, Tillett D, Streckert HH (2007) Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array. Anal Chim Acta 584:78–88

    Article  CAS  Google Scholar 

  12. Mironenko AY, Sergeev AA, Nazirov AE, Modin EB, Voznesenskiy SS, Bratskaya SY (2016) H2S optical waveguide gas sensors based on chitosan/Au and chitosan/Ag nanocomposites. Sens Actuators B Chem 225:348–353

    Article  CAS  Google Scholar 

  13. Yang M, Sun Y, Zhang D, Jiang D (2010) Using Pd/WO3 composite thin films as sensing materials for optical fiber hydrogen sensors. Sens Actuators B Chem 143:750–753

    Article  CAS  Google Scholar 

  14. Lee Y-S, Joo B-S, Choi N-J, Lim J-O, Huh J-S, Lee D-D (2003) Visible optical sensing of ammonia based on polyaniline film. Sens Actuators B Chem 93:148–152

    Article  CAS  Google Scholar 

  15. Pandey SK, Kim K-H, Tang K-T (2012) A review of sensor-based methods for monitoring hydrogen sulfide. TrAC Trends Anal Chem 32:87–99

    Article  CAS  Google Scholar 

  16. Jagadale SB, Patil VL, Vanalakar SA, Patil PS, Deshmukh HP (2018) Preparation, characterization of 1D ZnO nanorods and their gas sensing properties. Ceram Int 44:3333–3340

    Article  CAS  Google Scholar 

  17. Zhu L, Li Y, Zeng W (2018) Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl Surf Sci 427:281–287

    Article  CAS  Google Scholar 

  18. Yang X, Zhang S, Yu Q, Zhao L, Sun P, Wang T, Liu F, Yan X, Gao Y, Liang X, Zhang S, Lu G (2019) One step synthesis of branched SnO2/ZnO heterostructures and their enhanced gas-sensing properties. Sens Actuators B Chem 281:415–423

    Article  CAS  Google Scholar 

  19. Zhong X, Shen Y, Zhao S, Chen X, Han C, Wei D, Fang P, Meng D (2019) SO2 sensing properties of SnO2 nanowires grown on a novel diatomite-based porous substrate. Ceram Int 45:2556–2565

    Article  CAS  Google Scholar 

  20. Zhou Q, Chen W, Xu L, Kumar R, Gui Y, Zhao Z, Tang C, Zhu S (2018) Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials. Ceram Int 44:4392–4399

    Article  CAS  Google Scholar 

  21. Zhou Q, Xu L, Umar A, Chen W, Kumar R (2018) Pt nanoparticles decorated SnO2 nanoneedles for efficient CO gas sensing applications. Sens Actuators B Chem 256:656–664

    Article  CAS  Google Scholar 

  22. Gao X, Zhou Q, Lu Z, Xu L, Zhang Q, Zeng W (2019) Synthesis of Cr2O3 nanoparticle-Coated SnO2 nanofibers and C2H2 sensing properties. Front Mater 6:163

    Article  Google Scholar 

  23. Ding M, Xie N, Wang C, Kou X, Zhang H, Guo L, Sun Y, Chuai X, Gao Y, Liu F, Sun P, Lu G (2017) Enhanced NO2 gas sensing properties by Ag-doped hollow urchin-like In2O3 hierarchical nanostructures. Sens Actuators B Chem 252:418–427

    Article  CAS  Google Scholar 

  24. Gu F, Nie R, Han D, Wang Z (2015) In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens Actuators B Chem 219:94–99

    Article  CAS  Google Scholar 

  25. Kulkarni SB, Navale YH, Navale ST, Stadler FJ, Ramgir NS, Patil VB (2019) Hybrid polyaniline-WO3 flexible sensor: a room temperature competence towards NH3 gas. Sens Actuators B Chem 288:279–288

    Article  CAS  Google Scholar 

  26. Zappa D, Galstyan V, Kaur N, Hashitha MM, Arachchige M, Sisman O, Comini E (2018) Metal oxide-based heterostructures for gas sensors—a review. Anal Chim Acta 1039:1–23

    Article  CAS  Google Scholar 

  27. Umar A, Alshahranic AA, Algarnic H, Kumard R (2017) CuO nanosheets as potential scaffolds for gas sensing applications. Sens Actuators B Chem 250:24–31

    Article  CAS  Google Scholar 

  28. Diao K, Zhou M, Zhang J, Tang Y, Wang S, Cui X (2015) High response to H2S gas with facile synthesized hierarchical ZnO microstructures. Sens Actuators, B 219:30–37

    Article  CAS  Google Scholar 

  29. Ayesh AI, Ahmed RE, Al-Rashid MA, Alarrouqi RA, Saleh B, Abdulrehman T, Haik Y, Al-Sulaiti LA (2018) Selective gas sensors using graphene and CuO nanorods. Sens Actuators A Phys 283:107–112

    Article  CAS  Google Scholar 

  30. Xu J, Li S, Li L, Chen L, Zhu Y (2018) Facile fabrication and superior gas sensing properties of spongelike Co-doped ZnO microspheres for ethanol sensors. Ceram Int 44:16773–16780

    Article  CAS  Google Scholar 

  31. Uddin ASMI, Yaqoob U, Phan D-T, Chung G-S (2016) A novel flexible acetylene gas sensor based on PI/PTFE-supported Ag-loaded vertical ZnO nanorods array. Sens Actuators B Chem 222:536–543

    Article  CAS  Google Scholar 

  32. Wang Y, Meng X, Yao M, Sun G, Zhang Z (2019) Enhanced CH4 sensing properties of Pd modified ZnO nanosheets. Ceram Int 45(10):13150–13157

    Article  CAS  Google Scholar 

  33. Nancy Anna Anasthasiya A, Kampara RK, Rai PK, Jeyaprakash BG (2018) Gold functionalized ZnO nanowires as a fast response/recovery ammonia sensor. Appl Surf Sci 449:244–249

    Article  CAS  Google Scholar 

  34. Wang J, Zhou Q, Zeng W (2019) Competitive adsorption of SF6 decompositions on Ni-doped ZnO (100) surface: computational and experimental study. Appl Surf Sci 479:185–197

    Article  CAS  Google Scholar 

  35. Da Silva LF, M’Peko J-C, Catto AC, Bernardini S, Mastelaro VR, Aguir K, Ribeirod C, Longo E (2017) UV-enhanced ozone gas sensing response of ZnO–SnO2 heterojunctions at room temperature. Sens Actuators B Chem 240:573–579

    Article  CAS  Google Scholar 

  36. Yang T, Gu K, Zhu M, Lu Q, Zhai C, Zhao Q, Yang X, Zhang M (2019) ZnO–SnO2 heterojunction nanobelts: synthesis and ultraviolet light irradiation to improve the triethylamine sensing properties. Sens Actuators B Chem 279:410–417

    Article  CAS  Google Scholar 

  37. Lu Z, Zhou Q, Wang C, Wei Z, Xu L, Gui Y (2018) Electrospun ZnO–SnO2 composite nanofibers and enhanced sensing properties to SF6 decomposition byproduct H2S. Front Chem 6:540

    Article  CAS  Google Scholar 

  38. San X, Li M, Liu D, Wang G, Shen Y, Meng D, Meng F (2018) A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties. J Alloys Compd 739:260–269

    Article  CAS  Google Scholar 

  39. Zhou Q, Zeng W, Chen W, Xu L, Kumar R, Umar A (2019) High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO–ZnO nanodisks. Sens Actuators B Chem 298:126870

    Article  CAS  Google Scholar 

  40. Runa A, Zhang X, Wen G, Zhang B, Fu W, Yang H (2018) Actinomorphic flower-like n-ZnO/p-ZnFe2O4 composite and its improved NO2 gas-sensing property. Mater Lett 225:73–76

    Article  CAS  Google Scholar 

  41. Choi SW, Katoch A, Kim JH, Kim SS (2014) Prominent reducing gas-sensing performances of n-SnO2 nanowires by local creation of p–n heterojunctions by functionalization with p-Cr2O3 nanoparticles. ACS Appl Mater Interface 6:17723–17729

    Article  CAS  Google Scholar 

  42. Wang ZL (2008) Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology. ACS Nano 2:1987–1992

    Article  CAS  Google Scholar 

  43. Zhang Y, Liu Y, Zhou L, Liu D, Liu F, Liu F, Liang X, Yan X, Gao Y, Lu G (2018) The role of Ce doping in enhancing sensing performance of ZnO-based gas sensor by adjusting the proportion of oxygen species. Sens Actuators B Chem 273:991–998

    Article  CAS  Google Scholar 

  44. Zhu L, Zeng W (2017) Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens Actuators, A 267:242–261

    Article  CAS  Google Scholar 

  45. Iwamoto M, Yoda Y, Yamazoe N, Seiyama T (1978) Study of metal oxide catalysts by temperature programmed desorption. 4. Oxygen adsorption on various metal oxides. J Phys Chem C 82:2564–2570

    Article  CAS  Google Scholar 

  46. Kim H-J, Lee J-H (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuators B Chem 192:607–627

    Article  CAS  Google Scholar 

  47. Park S, Kim S, Kheel H, Hyun SK, Jin C, Lee C (2016) Enhanced H2S gas sensing performance of networked CuO–ZnO composite nanoparticle sensor. Mater Res Bull 82:130–135

    Article  CAS  Google Scholar 

  48. Datta N, Ramgir NS, Kumar S, Veerender P, Kaur M, Kailasaganapath S, Debnath AK, Aswal DK, Gupta SK (2014) Role of various interfaces of CuO/ZnO random nanowire networks in H2S sensing: an impedance and Kelvin probe analysis. Sens Actuators B Chem 202:1270–1280

    Article  CAS  Google Scholar 

  49. Zhang Y-B, Yin J, Li L, Zhang L-X, Bie L-J (2014) Enhanced ethanol gas-sensing properties of flower-like p-CuO/n-ZnO heterojunction nanorods. Sens Actuators B Chem 202:500–507

    Article  CAS  Google Scholar 

  50. Diao K, Xiao J, Zheng Z, Cui X (2018) Enhanced sensing performance and mechanism of CuO nanoparticle-loaded ZnO nanowires: comparison with ZnO–CuO core-shell nanowires. Appl Surf Sci 459:630–638

    Article  CAS  Google Scholar 

  51. Liu X, Du B, Sun Y, Yu M, Yin Y, Tang W, Chen C, Sun L, Yang B, Cao W, Ashfold MN (2016) Sensitive room temperature photoluminescence-based sensing of H2S with novel CuO–ZnO nanorods. ACS Appl Mater Interface 8:16379–16385

    Article  CAS  Google Scholar 

  52. Li D, Qin L, Zhao P, Zhang Y, Liu D, Liu F, Kang B, Wang Y, Song H, Zhang T, Lu G (2018) Preparation and gas-sensing performances of ZnO/CuO rough nanotubular arrays for low-working temperature H2S detection. Sens Actuators B Chem 254:834–841

    Article  CAS  Google Scholar 

  53. Katoch A, Choi S-W, Kim J-H, Lee JH, Lee J-S, Kim SS (2015) Importance of the nanograin size on the H2S-sensing properties of ZnO–CuO composite nanofiber. Sens Actuators, B 214:111–116

    Article  CAS  Google Scholar 

  54. Kim J-H, Lee J-H, Mirzaei A, Kim HW, Kim SS (2017) Optimization and gas sensing mechanism of n-SnO2-p-Co3O4 composite nanofiber. Sens Actuators, B 248:500–511

    Article  CAS  Google Scholar 

  55. Kim J-H, Lee J-H, Mirzaei A, Kim HW, Kim SS (2018) SnO2 (n)-NiO (p) composite nanowebs: gas sensing properties andsensing mechanisms. Sens Actuators, B 258:204–214

    Article  CAS  Google Scholar 

  56. Yan C, Lu H, Gao J, Zhu G, Yin F, Yang Z, Liu Q, Li G (2017) Synthesis of porous NiO–In2O3 composite nanofibers by electrospinning and their highly enhanced gas sensing properties. J Alloys Compd 699:567–574

    Article  CAS  Google Scholar 

  57. Wang L, Kang Y, Wang Y, Zhu B, Zhang S, Huang W, Wang S (2012) CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection. Mater Sci Eng, C 32:2079–2085

    Article  CAS  Google Scholar 

  58. Park S, Park S, Jung J, Hong T, Lee S, Kim HW, Lee C (2014) H2S gas sensing properties of CuO-functionalized WO3 nanowires. Ceram Int 40:11051–11056

    Article  CAS  Google Scholar 

  59. Kim H, Jin C, Park S, Kim S, Lee C (2012) H2S gas sensing properties of bare and Pd-functionalized CuO nanorods. Sens Actuators B Chem 161:594–599

    Article  CAS  Google Scholar 

  60. Wang M, Luo Q, Hussain S, Liu G, Qiao G, Kim EJ (2019) Sharply-precipitated spherical assembly of ZnO nanosheets for low temperature H2S gas sensing performances. Mater Sci Semicond Process 100:283–289

    Article  CAS  Google Scholar 

  61. Guoa W, Li X, Qin H, Wang Z (2015) PEG-20000 assisted hydrothermal synthesis of hierarchical ZnO flowers: structure, growth and gas sensor properties. Phys E 73:163–168

    Article  CAS  Google Scholar 

  62. Zhang B, Liu G, Cheng M, Gao Y, Zhao L, Li S, Liu F, Yan X, Zhang T, Sun P, Lu G (2018) The preparation of reduced graphene oxide-encapsulated α-Fe2O3 hybrid and its outstanding NO2 gas sensing properties at room temperature. Sens Actuators B Chem 261:252–263

    Article  CAS  Google Scholar 

  63. Qin C, Wang Y, Gong Y, Zhang Z, Cao J (2019) CuO–ZnO hetero-junctions decorated graphitic carbon nitride hybrid nanocomposite: hydrothermal synthesis and ethanol gas sensing application. J Alloys Compd 770:972–980

    Article  CAS  Google Scholar 

  64. Vasiliev RB, Rumyantseva MN, Yakovlev NV, Gaskov AM (1998) CuO/SnO2 thin film heterostructures as chemical sensors to H2S. Sens Actuators, B 50:186–193

    Article  CAS  Google Scholar 

  65. Hu X, Zhu Z, Li Z, Xie L, Wu Y, Zheng L (2018) Heterostructure of CuO microspheres modified with CuFe2O4 nanoparticles for highly sensitive H2S gas sensor. Sens Actuators B Chem 264:139–149

    Article  CAS  Google Scholar 

  66. Choi S-W, Katoch A, Zhang J, Kim SS (2013) Electrospun nanofibers of CuO–SnO2 nanocomposite as semiconductor gas sensors for H2S detection. Sens Actuators B Chem 176:585–591

    Article  CAS  Google Scholar 

  67. Katoch A, Kim J-H, Kim SS (2015) Significance of the nanograin size on the H2S-sensing ability of CuO–SnO2 composite nanofibers. J Sens 2015:1–7

    Article  CAS  Google Scholar 

  68. Khalil A, Kim JJ, Tuller HL, Rutledge GC, Hashaikeh R (2016) Gas sensing behavior of electrospun nickel oxide nanofibers: effect of morphology and microstructure. Sens Actuators B Chem 227:54–64

    Article  CAS  Google Scholar 

  69. Zhang L, Jiao W (2015) The effect of microstructure on the gas properties of NiFe2O4 sensors: nanotube and nanoparticle. Sens Actuators B Chem 216:293–297

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (Grant Number 61704098) and the Natural Science Foundation of Shandong Province (ZR2017BF025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaomei Wang or Bo Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4398 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Sun, F., Wang, X. et al. Enhanced H2S gas sensing properties by the optimization of p-CuO/n-ZnO composite nanofibers. J Mater Sci 55, 7702–7714 (2020). https://doi.org/10.1007/s10853-020-04569-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04569-8

Navigation