Skip to main content
Log in

An overview on the synthesis and recent applications of conducting poly(3,4-ethylenedioxythiophene) (PEDOT) in industry and biomedicine

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this review, we introduce a conducting polymer called poly(3,4-ethylenedioxythiophene) (PEDOT), due to its interesting features such as satisfactory conductivity, good transparency, easy processability, low price, small redox potential and good electrochromic properties. We review the synthesis routes, conductivity enhancement methods and applications of PEDOT in industrial and biomedical fields. We also discuss the challenges to use PEDOT such as difficulty in deposition on the electrode surface and conductivity enhancement. PEDOT is the most promising derivative of polythiophene in the cases of physical and chemical stability, conductivity, biocompatibility and transparency. PEDOT is usually paired with polystyrene sulfonate (PSS) to enhance its molecular weight. PEDOT:PSS is an electronically conducting polymer, which is water-soluble causing easy processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data availability statement

The processed data required to reproduce these findings are available in the mentioned references.

References

  1. Fu X, Ramos M, Al-Jumaily AM et al (2019) Stretchable strain sensor facilely fabricated based on multi-wall carbon nanotube composites with excellent performance. J Mater Sci 54:2170–2180 https://doi.org/10.1007/s10853-018-2954-4

    Article  CAS  Google Scholar 

  2. An R, Zhang B, Han L et al (2019) Strain-sensitivity conductive MWCNTs composite hydrogel for wearable device and near-infrared photosensor. J Mater Sci 54:8515–8530. https://doi.org/10.1007/s10853-019-03438-3

    Article  CAS  Google Scholar 

  3. Kumar A, Sharma K, Dixit AR (2019) A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J Mater Sci 54(8):5992–6026. https://doi.org/10.1007/s10853-018-03244-3

    Article  CAS  Google Scholar 

  4. Wang X, Shi Z, Meng F et al (2020) Interfacial interaction-induced temperature-dependent mechanical property of graphene-PDMS nanocomposite. J Mater Sci 55:1553–1561. https://doi.org/10.1007/s10853-019-04126-y

    Article  CAS  Google Scholar 

  5. Salahandish R, Ghaffarinejad A, Naghib SM et al (2019) Sandwich-structured nanoparticles-grafted functionalized graphene based 3D nanocomposites for high-performance biosensors to detect ascorbic acid biomolecule. Sci Rep 9:1226

    Article  CAS  Google Scholar 

  6. Mantione D, del Agua I, Sanchez-Sanchez A, Mecerreyes D (2017) Poly (3, 4-ethylenedioxythiophene)(PEDOT) derivatives: innovative conductive polymers for bioelectronics. Polymers (Basel) 9:354

    Article  CAS  Google Scholar 

  7. Zhang Y, Chen Y, Qi Y et al (2016) An ocular iontophoretic device using PEDOT electrode for local drug delivery. Sens Actuators B Chem 237:1007–1014

    Article  CAS  Google Scholar 

  8. Abidian MR, Kim D, Martin DC (2006) Conducting-polymer nanotubes for controlled drug release. Adv Mater 18:405–409

    Article  CAS  Google Scholar 

  9. Xu G-L, Li Y, Ma T et al (2015) PEDOT-PSS coated ZnO/C hierarchical porous nanorods as ultralong-life anode material for lithium ion batteries. Nano Energy 18:253–264

    Article  CAS  Google Scholar 

  10. Kumar N, Ginting RT, Kang J-W (2018) Flexible, large-area, all-solid-state supercapacitors using spray deposited PEDOT: pSS/reduced-graphene oxide. Electrochim Acta 270:37–47

    Article  CAS  Google Scholar 

  11. Khair N, Islam R, Shahariar H. Carbon-based electronic textiles: materials, fabrication processes and applications

  12. Qiu Y, Ma X (2019) Crystallization, mechanical and UV protection properties of graphene oxide/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biocomposites. J Mater Sci 54:14388–14399. https://doi.org/10.1007/s10853-019-03951-5

    Article  CAS  Google Scholar 

  13. Tian X, Hu Y, Zhang J et al (2019) Blends of poly(l-lactide), poly(propylidene carbonate) and graphene oxide compatibilized with poly(ethylene glycol), and their mechanical properties. J Mater Sci 54:14975–14985. https://doi.org/10.1007/s10853-019-03905-x

    Article  CAS  Google Scholar 

  14. Jiang MR, Zhou H, Cheng XH (2019) Effect of rare earth surface modification of carbon nanotubes on enhancement of interfacial bonding of carbon nanotubes reinforced epoxy matrix composites. J Mater Sci 54:10235–10248. https://doi.org/10.1007/s10853-019-03631-4

    Article  CAS  Google Scholar 

  15. Kumanek B, Janas D (2019) Thermal conductivity of carbon nanotube networks: a review. J Mater Sci 54(10):7397–7427. https://doi.org/10.1007/s10853-019-03368-0

    Article  CAS  Google Scholar 

  16. Tran XT, Park SS, Song S et al (2019) Electroconductive performance of polypyrrole/reduced graphene oxide/carbon nanotube composites synthesized via in situ oxidative polymerization. J Mater Sci 54:3156–3173. https://doi.org/10.1007/s10853-018-3043-4

    Article  CAS  Google Scholar 

  17. Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym Plast Technol Eng 51:1487–1500

    Article  CAS  Google Scholar 

  18. Kazemi F, Naghib SM, Mohammadpour Z (2020) Multifunctional micro-/nanoscaled structures based on polyaniline: an overview of modern emerging devices. Mater Today Chem 16:100249

    Article  CAS  Google Scholar 

  19. Salahandish R, Ghaffarinejad A, Naghib SM et al (2018) Nano-biosensor for highly sensitive detection of HER2 positive breast cancer. Biosens Bioelectron 117:104–111

    Article  CAS  Google Scholar 

  20. Salahandish R, Ghaffarinejad A, Omidinia E et al (2018) Label-free ultrasensitive detection of breast cancer miRNA-21 biomarker employing electrochemical nano-genosensor based on sandwiched AgNPs in PANI and N-doped graphene. Biosens Bioelectron 120:129–136

    Article  CAS  Google Scholar 

  21. Salahandish R, Ghaffarinejad A, Naghib SM et al (2018) A novel graphene-grafted gold nanoparticles composite for highly sensitive electrochemical biosensing. IEEE Sens J 18:2513–2519

    Article  CAS  Google Scholar 

  22. Wen Y, Xu J (2017) Scientific importance of water-processable PEDOT–PSS and preparation, challenge and new application in sensors of its film electrode: a review. J Polym Sci Part A Polym Chem 55:1121–1150

    Article  CAS  Google Scholar 

  23. Wei W, Wang H, Hu YH (2014) A review on PEDOT-based counter electrodes for dye-sensitized solar cells. Int J Energy Res 38:1099–1111

    Article  CAS  Google Scholar 

  24. Louwet F, Groenendaal L, Dhaen J et al (2003) PEDOT/PSS: synthesis, characterization, properties and applications. Synth Met 135–136:115–117. https://doi.org/10.1016/S0379-6779(02)00518-0

    Article  CAS  Google Scholar 

  25. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353

    Article  CAS  Google Scholar 

  26. Mahakul PC, Sa K, Das B et al (2017) Preparation and characterization of PEDOT: pSS/reduced graphene oxide–carbon nanotubes hybrid composites for transparent electrode applications. J Mater Sci 52:5696–5707. https://doi.org/10.1007/s10853-017-0806-2

    Article  CAS  Google Scholar 

  27. Kim YH, Sachse C, Machala ML et al (2011) Highly conductive PEDOT: pSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv Funct Mater 21:1076–1081

    Article  CAS  Google Scholar 

  28. Çetin MZ, Camurlu P (2018) An amperometric glucose biosensor based on PEDOT nanofibers. RSC Adv 8:19724–19731

    Article  Google Scholar 

  29. Zhao Z, Richardson GF, Meng Q et al (2015) PEDOT-based composites as electrode materials for supercapacitors. Nanotechnology 27:42001

    Article  CAS  Google Scholar 

  30. Carli S, Fioravanti G, Armirotti A et al (2019) A new drug delivery system based on tauroursodeoxycholic acid and PEDOT. Chem Eur J 25(9):2322–2329

    CAS  Google Scholar 

  31. Lang U, Müller E, Naujoks N, Dual J (2009) Microscopical investigations of PEDOT: pSS thin films. Adv Funct Mater 19:1215–1220

    Article  CAS  Google Scholar 

  32. Pires F, Ferreira Q, Rodrigues CAV et al (2015) Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim Biophys Acta 1850:1158–1168

    Article  CAS  Google Scholar 

  33. Zabihi F, Xie Y, Gao S, Eslamian M (2015) Morphology, conductivity, and wetting characteristics of PEDOT: pSS thin films deposited by spin and spray coating. Appl Surf Sci 338:163–177

    Article  CAS  Google Scholar 

  34. Han Y, Shen M, Wu Y et al (2013) Preparation and electrochemical performances of PEDOT/sulfonic acid-functionalized graphene composite hydrogel. Synth Met 172:21–27

    Article  CAS  Google Scholar 

  35. Ranjusha R, Sajesh KM, Roshny S et al (2014) Supercapacitors based on freeze dried MnO2 embedded PEDOT: pSS hybrid sponges. Microporous Mesoporous Mater 186:30–36

    Article  CAS  Google Scholar 

  36. Levermore PA, Jin R, Wang X et al (2008) High efficiency organic light-emitting diodes with PEDOT-based conducting polymer anodes. J Mater Chem 18:4414–4420

    Article  CAS  Google Scholar 

  37. Liu C, Lu B, Yan J et al (2010) Highly conducting free-standing poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films with improved thermoelectric performances. Synth Met 160:2481–2485

    Article  CAS  Google Scholar 

  38. Green R, Abidian MR (2015) Conducting polymers for neural prosthetic and neural interface applications. Adv Mater 27:7620–7637

    Article  CAS  Google Scholar 

  39. Abdelhamid ME, O’Mullane AP, Snook GA (2015) Storing energy in plastics: a review on conducting polymers & their role in electrochemical energy storage. Rsc Adv. 5:11611–11626

    Article  CAS  Google Scholar 

  40. Shi H, Liu C, Jiang Q, Xu J (2015) Effective approaches to improve the electrical conductivity of PEDOT: pSS: a review. Adv Electron Mater 1:1500017

    Article  CAS  Google Scholar 

  41. Zhang S, Zhang W, Zhang G et al (2018) p-Toluenesulfonic acid catalytic polymerization of EDOT without oxidants. Mater Lett 222:105–108

    Article  CAS  Google Scholar 

  42. Xia L, Wei Z, Wan M (2010) Conducting polymer nanostructures and their application in biosensors. J Colloid Interface Sci 341:1–11

    Article  CAS  Google Scholar 

  43. Han MG, Foulger SH (2005) 1-Dimensional structures of poly (3, 4-ethylenedioxythiophene)(PEDOT): a chemical route to tubes, rods, thimbles, and belts. Chem Commun 24:3092–3094

    Article  CAS  Google Scholar 

  44. Pan L, Qiu H, Dou C et al (2010) Conducting polymer nanostructures: template synthesis and applications in energy storage. Int J Mol Sci 11:2636–2657

    Article  CAS  Google Scholar 

  45. Ghosh S, Remita H, Ramos L et al (2014) PEDOT nanostructures synthesized in hexagonal mesophases. New J Chem 38:1106–1115

    Article  CAS  Google Scholar 

  46. Anothumakkool B, Soni R, Bhange SN, Kurungot S (2015) Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor. Energy Environ Sci 8:1339–1347

    Article  CAS  Google Scholar 

  47. Su K, Nuraje N, Zhang L et al (2007) Fast conductance switching in single-crystal organic nanoneedles prepared from an interfacial polymerization-crystallization of 3, 4-Ethylenedioxythiophene. Adv Mater 19:669–672

    Article  CAS  Google Scholar 

  48. Zhang X, MacDiarmid AG, Manohar SK (2005) Chemical synthesis of PEDOT nanofibers. Chem Commun 42:5328–5330

    Article  CAS  Google Scholar 

  49. Nabid MR, Rezaei SJT, Hosseini SZ (2012) A novel template-free route to synthesis of poly (3, 4-ethylenedioxythiophene) with fiber and sphere-like morphologies. Mater Lett 84:128–131

    Article  CAS  Google Scholar 

  50. Lin Y, Huang L, Chen L et al (2015) Fully gravure-printed NO2 gas sensor on a polyimide foil using WO3-PEDOT: pSS nanocomposites and Ag electrodes. Sens Actuators B Chem 216:176–183

    Article  CAS  Google Scholar 

  51. Takamatsu S, Kobayashi T, Shibayama N et al (2012) Fabric pressure sensor array fabricated with die-coating and weaving techniques. Sens Actuators A Phys 184:57–63

    Article  CAS  Google Scholar 

  52. Guo X, Jian J, Lin L et al (2013) O 2 plasma-functionalized SWCNTs and PEDOT/PSS composite film assembled by dielectrophoresis for ultrasensitive trimethylamine gas sensor. Analyst 138:5265–5273

    Article  CAS  Google Scholar 

  53. Sun B, Long Y-Z, Liu S-L et al (2013) Fabrication of curled conducting polymer microfibrous arrays via a novel electrospinning method for stretchable strain sensors. Nanoscale 5:7041–7045

    Article  CAS  Google Scholar 

  54. Jung YS, Jung W, Tuller HL, Ross CA (2008) Nanowire conductive polymer gas sensor patterned using self-assembled block copolymer lithography. Nano Lett 8:3776–3780

    Article  CAS  Google Scholar 

  55. DeFranco JA, Schmidt BS, Lipson M, Malliaras GG (2006) Photolithographic patterning of organic electronic materials. Org Electron 7:22–28

    Article  CAS  Google Scholar 

  56. Yang Y, Jiang Y, Xu J, Yu J (2008) Preparation and characterization of conducting poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) Langmuir-Blodgett film. Thin Solid Films 516:1191–1196

    Article  CAS  Google Scholar 

  57. Hall DB, Underhill P, Torkelson JM (1998) Spin coating of thin and ultrathin polymer films. Polym Eng Sci 38:2039–2045

    Article  CAS  Google Scholar 

  58. Wang M, Wang X, Moni P et al (2017) CVD polymers for devices and device fabrication. Adv Mater 29:1604606

    Article  CAS  Google Scholar 

  59. Lock JP, Lutkenhaus JL, Zacharia NS et al (2007) Electrochemical investigation of PEDOT films deposited via CVD for electrochromic applications. Synth Met 157:894–898

    Article  CAS  Google Scholar 

  60. Wang X, Ugur A, Goktas H et al (2016) Room temperature resistive volatile organic compound sensing materials based on a hybrid structure of vertically aligned carbon nanotubes and conformal oCVD/iCVD polymer coatings. ACS Sens 1:374–383

    Article  CAS  Google Scholar 

  61. Winther-Jensen B, West K (2004) Vapor-phase polymerization of 3, 4-ethylenedioxythiophene: a route to highly conducting polymer surface layers. Macromolecules 37:4538–4543

    Article  CAS  Google Scholar 

  62. Grosso D (2011) How to exploit the full potential of the dip-coating process to better control film formation. J Mater Chem 21:17033–17038

    Article  CAS  Google Scholar 

  63. Lin C-Y, Chen J-G, Hu C-W et al (2009) Using a PEDOT: pSS modified electrode for detecting nitric oxide gas. Sens Actuators B Chem 140:402–406

    Article  CAS  Google Scholar 

  64. Eom SH, Senthilarasu S, Uthirakumar P et al (2009) Polymer solar cells based on inkjet-printed PEDOT: pSS layer. Org Electron 10:536–542

    Article  CAS  Google Scholar 

  65. Champagne VK (2007) The cold spray materials deposition process. Elsevier, Amsterdam

    Book  Google Scholar 

  66. Kim Y, Lee J, Kang H et al (2012) Controlled electro-spray deposition of highly conductive PEDOT: pSS films. Sol Energy Mater Sol Cells 98:39–45

    Article  CAS  Google Scholar 

  67. Patra S, Barai K, Munichandraiah N (2008) Scanning electron microscopy studies of PEDOT prepared by various electrochemical routes. Synth Met 158:430–435

    Article  CAS  Google Scholar 

  68. Wakizaka D, Fushimi T, Ohkita H, Ito S (2004) Hole transport in conducting ultrathin films of PEDOT/PSS prepared by layer-by-layer deposition technique. Polymer (Guildf) 45:8561–8565

    Article  CAS  Google Scholar 

  69. Lim K, Jung S, Lee S et al (2014) The enhancement of electrical and optical properties of PEDOT: pSS using one-step dynamic etching for flexible application. Org Electron 15:1849–1855

    Article  CAS  Google Scholar 

  70. Ouyang L, Jafari MJ, Cai W et al (2018) The contraction of PEDOT films formed on a macromolecular liquid-like surface. J Mater Chem C 6:654–660

    Article  CAS  Google Scholar 

  71. Wei Q, Mukaida M, Naitoh Y, Ishida T (2013) Morphological change and mobility enhancement in PEDOT: pSS by adding co-solvents. Adv Mater 25:2831–2836

    Article  CAS  Google Scholar 

  72. Lingstedt LV, Ghittorelli M, Lu H et al (2019) Effect of DMSO Solvent Treatments on the Performance of PEDOT: pSS Based Organic Electrochemical Transistors. Adv Electron Mater 5:1800804

    Article  CAS  Google Scholar 

  73. Hokazono M, Anno H, Toshima N (2014) Thermoelectric properties and thermal stability of PEDOT: pSS films on a polyimide substrate and application in flexible energy conversion devices. J Electron Mater 43:2196–2201

    Article  CAS  Google Scholar 

  74. Lee M-W, Lee M-Y, Choi J-C et al (2010) Fine patterning of glycerol-doped PEDOT: pSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs. Org Electron 11:854–859

    Article  CAS  Google Scholar 

  75. Mengistie DA, Wang P-C, Chu C-W (2013) Highly conductive PEDOT: pSS electrode treated with polyethylene glycol for ITO-free polymer solar cells. ECS Trans 58:49–56

    Article  CAS  Google Scholar 

  76. Badre C, Marquant L, Alsayed AM, Hough LA (2012) Highly conductive poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid. Adv Funct Mater 22:2723–2727

    Article  CAS  Google Scholar 

  77. Xia Y, Ouyang J (2010) Anion effect on salt-induced conductivity enhancement of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) films. Org Electron 11:1129–1135

    Article  CAS  Google Scholar 

  78. Liu S, Li H, He C (2019) Simultaneous enhancement of electrical conductivity and seebeck coefficient in organic thermoelectric SWNT/PEDOT: pSS nanocomposites. Carbon N Y 149:25–32

    Article  CAS  Google Scholar 

  79. Zhao Z, Chen X, Liu Q et al (2015) Efficiency enhancement of polymer solar cells via zwitterion doping in PEDOT: pSS hole transport layer. Org Electron 27:232–239

    Article  CAS  Google Scholar 

  80. Xia Y, Sun K, Ouyang J (2012) Highly conductive poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells. Energy Environ Sci 5:5325–5332

    Article  CAS  Google Scholar 

  81. Alemu D, Wei H-Y, Ho K-C, Chu C-W (2012) Highly conductive PEDOT: pSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ Sci 5:9662–9671

    Article  CAS  Google Scholar 

  82. Xia Y, Sun K, Ouyang J (2012) Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv Mater 24:2436–2440

    Article  CAS  Google Scholar 

  83. Xia Y, Zhang H, Ouyang J (2010) Highly conductive PEDOT: pSS films prepared through a treatment with zwitterions and their application in polymer photovoltaic cells. J Mater Chem 20:9740–9747

    Article  CAS  Google Scholar 

  84. Bubnova O, Khan ZU, Malti A et al (2011) Optimization of the thermoelectric figure of merit in the conducting polymer poly (3, 4-ethylenedioxythiophene). Nat Mater 10:429

    Article  CAS  Google Scholar 

  85. Xia Y, Ouyang J (2012) Significant different conductivities of the two grades of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate), Clevios P and Clevios PH1000, arising from different molecular weights. ACS Appl Mater Interfaces 4:4131–4140

    Article  CAS  Google Scholar 

  86. Posudievsky OY, Konoshchuk NV, Shkavro AG et al (2014) Structure and electronic properties of poly (3, 4-ethylenedioxythiophene) poly (styrene sulfonate) prepared under ultrasonic irradiation. Synth Met 195:335–339

    Article  CAS  Google Scholar 

  87. Huang J, Miller PF, de Mello JC et al (2003) Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films. Synth Met 139:569–572

    Article  CAS  Google Scholar 

  88. Benor A, Takizawa S, Chen P et al (2009) Dramatic efficiency improvement in phosphorescent organic light-emitting diodes with ultraviolet-ozone treated poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate). Appl Phys Lett 94:127

    Article  CAS  Google Scholar 

  89. Benor A, Takizawa S, Pérez-Bolívar C, Anzenbacher P Jr (2010) Efficiency improvement of fluorescent OLEDs by tuning the working function of PEDOT: pSS using UV–ozone exposure. Org Electron 11:938–945

    Article  CAS  Google Scholar 

  90. Moujoud A, Oh SH, Shin HS, Kim HJ (2010) On the mechanism of conductivity enhancement and work function control in PEDOT: pSS film through UV-light treatment. Phys status solidi 207:1704–1707

    Article  CAS  Google Scholar 

  91. Lin Y-J, Yang F-M, Huang C-Y et al (2007) Increasing the work function of poly (3, 4-ethylenedioxythiophene) doped with poly (4-styrenesulfonate) by ultraviolet irradiation. Appl Phys Lett 91:92127

    Article  CAS  Google Scholar 

  92. Kiya Y, Hutchison GR, Henderson JC et al (2006) Elucidation of the Redox Behavior of 2, 5-Dimercapto-1, 3, 4-thiadiazole (DMcT) at Poly (3, 4-ethylenedioxythiophene)(PEDOT)-Modified Electrodes and Application of the DMcT − PEDOT Composite Cathodes to Lithium/Lithium Ion Batteries. Langmuir 22:10554–10563

    Article  CAS  Google Scholar 

  93. Ali S, Jaffer S, Maitlo I et al (2020) Photo cured 3D porous silica-carbon (SiO2–C) membrane as anode material for high performance rechargeable Li-ion batteries. J Alloys Compd 812:152127

    Article  CAS  Google Scholar 

  94. Yan M, Zhang Y, Li Y et al (2016) Manganese dioxide nanosheet functionalized sulfur@ PEDOT core–shell nanospheres for advanced lithium–sulfur batteries. J Mater Chem A 4:9403–9412

    Article  CAS  Google Scholar 

  95. Ko I-H, Kim S-J, Lim J et al (2016) Effect of PEDOT: pSS coating on manganese oxide nanowires for lithium ion battery anodes. Electrochim Acta 187:340–347

    Article  CAS  Google Scholar 

  96. Su D, Cortie M, Fan H, Wang G (2017) Prussian Blue Nanocubes with an Open Framework Structure Coated with PEDOT as High-Capacity Cathodes for Lithium-Sulfur Batteries. Adv Mater 29:1700587

    Article  CAS  Google Scholar 

  97. Fan X, Luo C, Lamb J et al (2015) PEDOT encapsulated FeOF nanorod cathodes for high energy lithium-ion batteries. Nano Lett 15:7650–7656

    Article  CAS  Google Scholar 

  98. Pan J, Xu G, Ding B et al (2016) PAA/PEDOT: pSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium–sulfur batteries. RSC Adv 6:40650–40655

    Article  CAS  Google Scholar 

  99. Yan H, Zhang G, Li Y (2017) Synthesis and characterization of advanced Li3V2 (PO4) 3 nanocrystals@ conducting polymer PEDOT for high energy lithium-ion batteries. Appl Surf Sci 393:30–36

    Article  CAS  Google Scholar 

  100. McGraw M, Kolla P, Yao B et al (2016) One-step solid-state in situ thermal polymerization of silicon-PEDOT nanocomposites for the application in lithium-ion battery anodes. Polymer (Guildf) 99:488–495

    Article  CAS  Google Scholar 

  101. Ding Z, Zhang Q, Chen Y et al (2019) PEDOT-PSS coated VS 2 nanosheet anodes for high rate and ultrastable lithium-ion batteries. New J Chem 43:1681–1687

    Article  CAS  Google Scholar 

  102. Reyes-Reyes M, López-Sandoval R (2018) Optimizing the oxidation level of PEDOT anode in air-PEDOT battery. Org Electron 52:364–370

    Article  CAS  Google Scholar 

  103. Shang C, Dong S, Zhang S et al (2015) A Ni3S2-PEDOT monolithic electrode for sodium batteries. Electrochem Commun 50:24–27

    Article  CAS  Google Scholar 

  104. Amanchukwu CV, Gauthier M, Batcho TP et al (2016) Evaluation and stability of PEDOT polymer electrodes for Li–O2 batteries. J Phys Chem Lett 7:3770–3775

    Article  CAS  Google Scholar 

  105. Yoon DH, Yoon SH, Ryu K-S, Park YJ (2016) PEDOT: pSS as multi-functional composite material for enhanced Li-air-battery air electrodes. Sci Rep 6:19962

    Article  CAS  Google Scholar 

  106. Yu C, Wang C, Liu X et al (2016) A cytocompatible robust hybrid conducting polymer hydrogel for use in a magnesium battery. Adv Mater 28:9349–9355

    Article  CAS  Google Scholar 

  107. Schwartz P-O, Pejic M, Wachtler M, Bäuerle P (2018) Synthesis and characterization of electroactive PEDOT-TEMPO polymers as potential cathode materials in rechargeable batteries. Synth Met 243:51–57

    Article  CAS  Google Scholar 

  108. Simons TJ, Salsamendi M, Howlett PC et al (2015) Rechargeable Zn/PEDOT Battery with an Imidazolium-Based Ionic Liquid as the Electrolyte. Chem ElectroChem 2:2071–2078

    CAS  Google Scholar 

  109. Ko W, Yoo JK, Park H et al (2019) Development of Na2FePO4F/Conducting-Polymer composite as an exceptionally high performance cathode material for Na-ion batteries. J Power Sources 432:1–7

    Article  CAS  Google Scholar 

  110. Ren X, Ai D, Lv R et al (2020) Facile preparation of V2O5/PEDOT core-shell nanobelts with excellent lithium storage performance. Electrochim Acta 336:135723

    Article  CAS  Google Scholar 

  111. Liu J, Xu J, Chen Y et al (2019) Synthesis and electrochemical performance of a PEDOT: pSS@ Ge composite as the anode materials for lithium-ion batteries. Int J Electrochem Sci 14:359–370

    Article  CAS  Google Scholar 

  112. Zhang S, Ci L, Mu W, Lu M (2019) NaCa2Si3O8 (OH)/PEDOT: pSS composite nanowires as anode materials for lithium-ion batteries. Chem Phys Lett 715:40–44

    Article  CAS  Google Scholar 

  113. Yang Q, Wu X, Huang X et al (2019) Cl–/SO32–-Codoped Poly (3, 4-ethylenedioxythiophene) that interpenetrates and encapsulates porous Fe2O3 To form composite nanoframeworks for stable lithium-ion batteries. ACS Appl Mater Interfaces 11:30801–30809

    Article  CAS  Google Scholar 

  114. Li H, Zhang B, Ou X et al (2019) Core-shell structure of SnO2@ C/PEDOT: pSS microspheres with dual protection layers for enhanced lithium storage performance. Chem ElectroChem 6:2182–2188

    CAS  Google Scholar 

  115. Zeng Q, Wu J, Yu Z, Luo L (2018) Conductive PEDOT-decorated Li4Ti5O12 as next-generation anode material for electrochemical lithium storage. Solid State Ionics 325:7–11

    Article  CAS  Google Scholar 

  116. Bai S, Ma Y, Jiang X et al (2017) Greatly improved cyclability for Li-ion batteries with a PEDOT–PSS coated nanostructured Ge anode. Surf Interfaces 8:214–218

    Article  CAS  Google Scholar 

  117. Zhang M (2017) Fabrication of Li2NiF4-PEDOT nanocomposites as conversion cathodes for lithium-ion batteries. J Alloys Compd 723:139–145

    Article  CAS  Google Scholar 

  118. Zhu Y, Li N, Lv T et al (2018) Ag-Doped PEDOT: pSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%. J Mater Chem A 6:941–947

    Article  CAS  Google Scholar 

  119. Raza W, Ali F, Raza N et al (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    Article  CAS  Google Scholar 

  120. Patra S, Munichandraiah N (2007) Supercapacitor studies of electrochemically deposited PEDOT on stainless steel substrate. J Appl Polym Sci 106:1160–1171

    Article  CAS  Google Scholar 

  121. He X, Yang W, Mao X et al (2018) All-solid state symmetric supercapacitors based on compressible and flexible free-standing 3D carbon nanotubes (CNTs)/poly (3, 4-ethylenedioxythiophene)(PEDOT) sponge electrodes. J Power Sources 376:138–146

    Article  CAS  Google Scholar 

  122. Patil DS, Pawar SA, Shin JC, Kim HJ (2018) MnO 2-Graphene Oxide-PEDOT: pSS Nanocomposite for an Electrochemical Supercapacitor. J Korean Phys Soc 72:952–958

    Article  CAS  Google Scholar 

  123. Ramesh G, Palaniappan S, Basavaiah K (2018) One-step synthesis of PEDOT-PSS·TiO 2 by peroxotitanium acid: a highly stable electrode for a supercapacitor. Ionics (Kiel) 24:1475–1485

    Article  CAS  Google Scholar 

  124. Lv T, Liu M, Zhu D et al (2018) Nanocarbon-based materials for flexible all-solid-state supercapacitors. Adv Mater 30:1705489

    Article  CAS  Google Scholar 

  125. Ni D, Chen Y, Song H et al (2019) Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors. J Mater Chem A 7(3):1323–1333

    Article  CAS  Google Scholar 

  126. Kumar N, Ginting RT, Ovhal M, Kang J-W (2018) All-solid-state flexible supercapacitor based on spray-printed polyester/PEDOT: pSS electrodes. Mol Cryst Liq Cryst 660:135–142

    Article  CAS  Google Scholar 

  127. Fabregat G, Hodásová L, del Valle LJ et al (2018) Sustainable Solid-State Supercapacitors Made of 3D-Poly (3, 4-ethylenedioxythiophene) and κ-Carrageenan Biohydrogel. Adv Eng Mater 20:1800018

    Article  CAS  Google Scholar 

  128. Dasdevan N, Abdah M, Aizat MA, Sulaiman Y (2019) Facile Electrodeposition of Poly (3, 4-ethylenedioxythiophene) on Poly (vinyl alcohol) Nanofibers as the Positive Electrode for High-Performance Asymmetric Supercapacitor. Energies 12:3382

    Article  CAS  Google Scholar 

  129. Chuai M, Zhang K, Chen X et al (2020) Effect of nondegeneracy on Ni3-xCoxS4 for high performance supercapacitor. Chem Eng J 381:122682

    Article  CAS  Google Scholar 

  130. Cai G, Darmawan P, Cui M et al (2016) Highly stable transparent conductive silver grid/PEDOT: pSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv Energy Mater 6:1501882

    Article  CAS  Google Scholar 

  131. Wu L, Dong S, Pang G et al (2019) Rocking-chair Na-ion hybrid capacitor: a high energy/power system based on Na 3 V 2 O 2 (PO 4) 2 F@ PEDOT core–shell nanorods. J Mater Chem A 7:1030–1037

    Article  CAS  Google Scholar 

  132. Du Pasquier A, Plitz I, Menocal S, Amatucci G (2003) A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J Power Sources 115:171–178

    Article  CAS  Google Scholar 

  133. Rajesh M, Raj CJ, Manikandan R et al (2017) A high performance PEDOT/PEDOT symmetric supercapacitor by facile in situ hydrothermal polymerization of PEDOT nanostructures on flexible carbon fibre cloth electrodes. Mater Today Energy 6:96–104

    Article  Google Scholar 

  134. Jain B, Krishnamoorthy K (2017) Large anion incorporation to improve the performance of large, paper based conducting polymer supercapacitors. Mater Today Energy 5:112–117

    Article  Google Scholar 

  135. Stanis RJ, Lambert TN, Yaklin MA (2010) Poly(3,4-ethylenedioxythiphene)(PEDOT)-modified anodes: reduced methanol crossover in direct methanol fuel cells. Energy Fuels 24:3125–3129

    Article  CAS  Google Scholar 

  136. Zhang M, Yuan W, Yao B et al (2014) Solution-processed PEDOT: pSS/graphene composites as the electrocatalyst for oxygen reduction reaction. ACS Appl Mater Interfaces 6:3587–3593

    Article  CAS  Google Scholar 

  137. O’hayre R, Cha S-W, Colella W, Prinz FB (2016) Fuel cell fundamentals. Wiley, New York

    Book  Google Scholar 

  138. Daş E, Bayrakçeken Yurtcan A (2017) PEDOT/C composites used as a proton exchange membrane fuel cell catalyst support: role of carbon amount. Energy Technol 5:1552–1560

    Article  CAS  Google Scholar 

  139. Kim H, Lee Y-J, Park G-G et al (2015) Fabrication of carbon paper containing PEDOT: pSS for use as a gas diffusion layer in proton exchange membrane fuel cells. Carbon N Y 85:422–428

    Article  CAS  Google Scholar 

  140. Baruah B, Kumar A, Umapathy GR, Ojha S (2019) Enhanced electrocatalytic activity of ion implanted rGO/PEDOT: pSS hybrid nanocomposites towards methanol electro-oxidation in direct methanol fuel cells. J Electroanal Chem 840:35–51

    Article  CAS  Google Scholar 

  141. Mukherjee P, Mishra P, Saravanan P (2018) Microbial fuel cell: a prospective sustainable solution for energy and environmental crisis. Int J Biosen Bioelectron 4:191–193

    Google Scholar 

  142. Kang YL, Ibrahim S, Pichiah S (2015) Synergetic effect of conductive polymer poly (3, 4-ethylenedioxythiophene) with different structural configuration of anode for microbial fuel cell application. Bioresour Technol 189:364–369

    Article  CAS  Google Scholar 

  143. Liu X, Wu W, Gu Z (2015) Poly(3,4-ethylenedioxythiophene) promotes direct electron transfer at the interface between Shewanella loihica and the anode in a microbial fuel cell. J Power Sources 277:110–115

    Article  CAS  Google Scholar 

  144. Wang Y, Zhao C, Sun D et al (2013) A graphene/poly (3, 4-ethylenedioxythiophene) hybrid as an anode for high-performance microbial fuel cells. ChemPlusChem 78:823–829

    Article  CAS  Google Scholar 

  145. Zhan C, Yu G, Lu Y et al (2017) Conductive polymer nanocomposites: a critical review of modern advanced devices. J Mater Chem C 5:1569–1585

    Article  CAS  Google Scholar 

  146. Liu Z, Parvez K, Li R et al (2015) Transparent conductive electrodes from graphene/PEDOT: pSS hybrid inks for ultrathin organic photodetectors. Adv Mater 27:669–675

    Article  CAS  Google Scholar 

  147. Yazmaciyan A, Meredith P, Armin A (2019) Cavity Enhanced Organic Photodiodes with Charge Collection Narrowing. Adv Opt Mater. 7:1801543

    Article  CAS  Google Scholar 

  148. Deckman I, Lechêne PB, Pierre A, Arias AC (2018) All-printed full-color pixel organic photodiode array with a single active layer. Org Electron 56:139–145

    Article  CAS  Google Scholar 

  149. Falco A, Nagel R, Lugli P et al (2016) Simulation and fabrication of polarized organic photodiodes. In: Ozanyan KB (ed) IEEE Sensors. IEEE, pp 1–3. https://doi.org/10.1109/ICSENS.2016.7808585

  150. Li L, Huang Y, Peng J et al (2014) Highly responsive organic near-infrared photodetectors based on a porphyrin small molecule. J Mater Chem C 2:1372–1375

    Article  CAS  Google Scholar 

  151. Abdullah SM, Rafique S, Azmer MI et al (2018) Modified photo-current response of an organic photodiode by using V2O5 in both hole and electron transport layers. Sens Actuators A Phys 272:334–340

    Article  CAS  Google Scholar 

  152. Opoku H, Lim B, Shin E et al (2019) Bis-Diketopyrrolopyrrole and Carbazole-Based Terpolymer for High Performance Organic Field-Effect Transistors and Infra-Red Photodiodes. Macromol Chem Phys 220:1900287

    Article  CAS  Google Scholar 

  153. Parbatani A, Song ES, Claypoole J, Yu B (2019) High performance broadband bismuth telluride tetradymite topological insulator photodiode. Nanotechnology 30:165201. https://doi.org/10.1088/1361-6528/aafc84

    Article  CAS  Google Scholar 

  154. Liu X, Sun G, Chen P et al (2019) High-performance asymmetric electrodes photodiode based on Sb/WSe 2 heterostructure. Nano Res 12:339–344

    Article  CAS  Google Scholar 

  155. Yu JC, Hong JA, Jung ED et al (2018) Highly efficient and stable inverted perovskite solar cell employing PEDOT: gO composite layer as a hole transport layer. Sci Rep 8:1070

    Article  CAS  Google Scholar 

  156. Xiong Q, Tian H, Zhang J et al (2018) CuSCN modified PEDOT: pSS to improve the efficiency of low temperature processed perovskite solar cells. Org Electron 61:151–156

    Article  CAS  Google Scholar 

  157. Seo K, Lee J, Jo J et al (2019) Highly Efficient (> 10%) Flexible organic solar cells on PEDOT-free and ITO-free transparent electrodes. Adv Mater 31:1902447

    Article  CAS  Google Scholar 

  158. Liu L, Zhou S, Zhao C et al (2020) TTA as a potential hole transport layer for application in conventional polymer solar cells. J Energy Chem 42:210–216

    Article  Google Scholar 

  159. Mann DS, Seo Y-H, Kwon S-N, Na S-I (2020) Efficient and stable planar perovskite solar cells with a PEDOT: pSS/SrGO hole interfacial layer. J Alloys Compd 812:152091

    Article  CAS  Google Scholar 

  160. Gupta N, Grover R, Mehta DS, Saxena K (2015) Efficiency enhancement in blue organic light emitting diodes with a composite hole transport layer based on poly (ethylenedioxythiophene): poly (styrenesulfonate) doped with TiO2 nanoparticles. Displays 39:104–108

    Article  CAS  Google Scholar 

  161. Song C, Zhong Z, Hu Z et al (2016) Methanol treatment on low-conductive PEDOT: pSS to enhance the PLED’s performance. Org Electron 28:252–256

    Article  CAS  Google Scholar 

  162. Gu Z-Z, Tian Y, Geng H-Z et al (2019) Highly conductive sandwich-structured CNT/PEDOT: pSS/CNT transparent conductive films for OLED electrodes. Appl Nanosci 9:1971–1979

    Article  CAS  Google Scholar 

  163. Liu Y, Feng J, Ou X-L et al (2016) Ultrasmooth, highly conductive and transparent PEDOT: pSS/silver nanowire composite electrode for flexible organic light-emitting devices. Org Electron 31:247–252

    Article  CAS  Google Scholar 

  164. Yousefi MH, Fallahzadeh A, Saghaei J, Darareh MD (2016) Fabrication of flexible ITO-Free OLED using vapor-treated PEDOT: pSS thin film as anode. J Disp Technol 12:1647–1651

    CAS  Google Scholar 

  165. Xing X, Lin T, Hu Y-X et al (2019) Inkjet printing high luminance phosphorescent OLED based on m-MTDATA: tPBi host. Mod Phys Lett B 33:1950149

    Article  CAS  Google Scholar 

  166. Levasseur D, Mjejri I, Rolland T, Rougier A (2019) Color tuning by oxide addition in PEDOT: pSS-based electrochromic devices. Polymers (Basel) 11:179

    Article  CAS  Google Scholar 

  167. Karaca GY, Eren E, Cogal GC et al (2019) Enhanced electrochromic characteristics induced by Au/PEDOT/Pt microtubes in WO3 based electrochromic devices. Opt Mater (Amst) 88:472–478

    Article  CAS  Google Scholar 

  168. Li H, McRae L, Elezzabi AY (2018) Solution-processed interfacial PEDOT: pSS assembly into porous tungsten molybdenum oxide nanocomposite films for electrochromic applications. ACS Appl Mater Interfaces 10:10520–10527

    Article  CAS  Google Scholar 

  169. Eren E (2019) Li + doped chitosan-based solid polymer electrolyte incorporated with PEDOT: pSS for electrochromic device. J Turkish Chem Soc Sect A Chem 5:1413–1422

    Google Scholar 

  170. Tang K, Zhang Y, Shi Y et al (2019) Crystalline WO3 nanowires array sheathed with sputtered amorphous shells for enhanced electrochromic performance. Appl Surf Sci 498:143796

    Article  CAS  Google Scholar 

  171. Ergun EGC, Eroglu D (2019) An electrochemically and optically stable electrochromic polymer film based on EDOT and 1, 2, 3, 4-tetrahydrophenazine. Org Electron 75:105398

    Article  CAS  Google Scholar 

  172. Lee C, Han H, Song M et al (2018) Organic phototransistors with chemically doped conjugated polymer interlayers for visible and near infrared light detection. IEEE J Sel Top Quantum Electron 24:1–7

    Google Scholar 

  173. Xie C, You P, Liu Z et al (2017) Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light Sci Appl 6:e17023

    Article  Google Scholar 

  174. Ji D, Li T, Liu J et al (2019) Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays. Nat Commun 10:12

    Article  CAS  Google Scholar 

  175. Du Y, Cai KF, Chen S et al (2014) Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT: pSS composite films. ACS Appl Mater Interfaces 6:5735–5743

    Article  CAS  Google Scholar 

  176. Song H, Cai K (2017) Preparation and properties of PEDOT: pSS/Te nanorod composite films for flexible thermoelectric power generator. Energy. 125:519–525

    Article  CAS  Google Scholar 

  177. Zhao D, Zhang Q, Chen W et al (2017) Highly flexible and conductive cellulose-mediated PEDOT: pSS/MWCNT composite films for supercapacitor electrodes. ACS Appl Mater Interfaces 9:13213–13222

    Article  CAS  Google Scholar 

  178. Li Z, Sun H, Hsiao C et al (2018) A Free-Standing High Output Power Density Thermoelectric Device Based on Structure-Ordered PEDOT: pSS. Adv Electron Mater 4:1700496

    Article  CAS  Google Scholar 

  179. Ding Y, Qiu Y, Cai K et al (2019) High performance n-type Ag 2 Se film on nylon membrane for flexible thermoelectric power generator. Nat Commun 10:841

    Article  CAS  Google Scholar 

  180. Zhao J, Tan D, Chen G (2017) A strategy to improve the thermoelectric performance of conducting polymer nanostructures. J Mater Chem C 5:47–53

    Article  CAS  Google Scholar 

  181. Xu S, Hong M, Shi X-L et al (2019) High-performance PEDOT: pSS Flexible Thermoelectric materials and their devices by Triple Post-treatments. Chem Mater 31(14):5238–5244

    Article  CAS  Google Scholar 

  182. Bae EJ, Kang YH, Jang K-S, Cho SY (2016) Enhancement of thermoelectric properties of PEDOT: pSS and tellurium-PEDOT: PSS hybrid composites by simple chemical treatment. Sci Rep 6:18805

    Article  CAS  Google Scholar 

  183. Wadnerkar NS, Berggren M, Zozoulenko I (2019) Exploring hydrogen storage in PEDOT: a computational study. J Phys Chem C 123(4):2066–2074

    Article  CAS  Google Scholar 

  184. Sen B, Kuzu S, Demir E et al (2017) Highly efficient catalytic dehydrogenation of dimethyl ammonia borane via monodisperse palladium–nickel alloy nanoparticles assembled on PEDOT. Int J Hydrogen Energy 42:23307–23314

    Article  CAS  Google Scholar 

  185. Srinivasan N, Shiga Y, Atarashi D et al (2015) A PEDOT-coated quantum dot as efficient visible light harvester for photocatalytic hydrogen production. Appl Catal B Environ 179:113–121

    Article  CAS  Google Scholar 

  186. Sarawutanukul S, Phattharasupakun N, Sawangphruk M (2019) 3D CVD graphene oxide-coated Ni foam as carbo-and electro-catalyst towards hydrogen evolution reaction in acidic solution: in situ electrochemical gas chromatography. Carbon N Y 151:109–119

    Article  CAS  Google Scholar 

  187. Madhuvilakku R, Alagar S, Mariappan R, Piraman S (2020) Glassy carbon electrodes modified with reduced graphene oxide-MoS2-poly (3, 4-ethylene dioxythiophene) nanocomposites for the non-enzymatic detection of nitrite in water and milk. Anal Chim Acta 1093:93–105

    Article  CAS  Google Scholar 

  188. Pang D, Ma C, Chen D et al (2019) Silver nanoparticle-functionalized poly (3, 4-ethylenedioxythiophene): polystyrene film on glass substrate for electrochemical determination of nitrite. Org Electron 75:105374

    Article  CAS  Google Scholar 

  189. Xu G, Liang S, Fan J et al (2016) Amperometric sensing of nitrite using a glassy carbon electrode modified with a multilayer consisting of carboxylated nanocrystalline cellulose and poly (diallyldimethyl ammonium) ions in a PEDOT host. Microchim Acta 183:2031–2037

    Article  CAS  Google Scholar 

  190. Fan X, Lin P, Liang S et al (2017) Gold nanoclusters doped poly (3, 4-ethylenedioxythiophene) for highly sensitive electrochemical sensing of nitrite. Ionics (Kiel) 23:997–1003

    Article  CAS  Google Scholar 

  191. Lin P, Chai F, Zhang R et al (2016) Electrochemical synthesis of poly (3, 4-ethylenedioxythiophene) doped with gold nanoparticles, and its application to nitrite sensing. Microchim Acta 183:1235–1241

    Article  CAS  Google Scholar 

  192. Zuo J, Zhang Z, Jiao J et al (2016) Sensitive and selective nitrite sensor based on phosphovanadomolybdates H6 [PMo9V3O40], poly (3, 4-ethylenedioxythiophene) and Au nanoparticles. Sensors Actuators B Chem 236:418–424

    Article  CAS  Google Scholar 

  193. Promsuwan K, Kanatharana P, Thavarungkul P, Limbut W (2020) Nitrite amperometric sensor for gunshot residue screening. Electrochim Acta 331:135309

    Article  CAS  Google Scholar 

  194. Jilani BS, Malathesh P, Mruthyunjayachari CD, Reddy KRV (2020) Cobalt (II) tetra methyl-quinoline oxy bridged phthalocyanine carbon nano particles modified glassy carbon electrode for sensing nitrite: a voltammetric study. Mater Chem Phys 239:121920

    Article  CAS  Google Scholar 

  195. Cardoso RM, Silva PRL, Lima AP et al (2020) 3D-Printed graphene/polylactic acid electrode for bioanalysis: biosensing of glucose and simultaneous determination of uric acid and nitrite in biological fluids. Sens Actuators B Chem 307:127621

    Article  CAS  Google Scholar 

  196. Diouf A, El Bari N, Bouchikhi B (2020) A novel electrochemical sensor based on ion imprinted polymer and gold nanomaterials for nitrite ion analysis in exhaled breath condensate. Talanta 209:120577

    Article  CAS  Google Scholar 

  197. Annalakshmi M, Kumaravel S, Chen S-M et al (2020) A straightforward ultrasonic-assisted synthesis of zinc sulfide for supersensitive detection of carcinogenic nitrite ions in water samples. Sens Actuators B Chem 305:127387

    Article  CAS  Google Scholar 

  198. Bahoumina P, Hallil-Abbas H, Lachaud J-L et al (2018) VOCs monitoring using differential microwave capacitive resonant transducer and conductive PEDOT: PSS-MWCNTs nanocomposite film for environmental applications. IEEE Trans Nanotechnol. https://doi.org/10.1109/TNANO.2018.2828302

  199. Park J-K, Kang T-G, Kim B-H et al (2018) Real-time humidity sensor based on microwave resonator coupled with PEDOT: pSS conducting polymer film. Sci Rep 8:439

    Article  CAS  Google Scholar 

  200. Hossein-Babaei F, Akbari T, Harkinezhad B (2019) Dopant passivation by adsorbed water monomers causes high humidity sensitivity in PEDOT: pSS thin films at ppm-level humidity. Sens Actuators B Chem 293:329–335

    Article  CAS  Google Scholar 

  201. Lv D, Chen W, Shen W et al (2019) Enhanced flexible room temperature ammonia sensor based on PEDOT: pSS thin film with FeCl3 additives prepared by inkjet printing. Sens Actuators B Chem 298:126890

    Article  CAS  Google Scholar 

  202. Ponmudi S, Sivakumar R, Sanjeeviraja C et al (2019) Al2O3: cr2O3: CuO (1: 1: 1) thin film prepared by radio frequency magnetron sputtering technique: a promising material for high sensitive room temperature ammonia sensor. Mater Res Express 6:66422

    Article  CAS  Google Scholar 

  203. An BW, Heo S, Ji S et al (2018) Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat Commun 9:2458

    Article  CAS  Google Scholar 

  204. Naseri M, Fotouhi L, Ehsani A (2018) Recent progress in the development of conducting polymer-based nanocomposites for electrochemical biosensors applications: a mini-review. Chem Rec 18:599–618

    Article  CAS  Google Scholar 

  205. Omidinia E, Naghib SM, Boughdachi A et al (2015) Hybridization of silver nanoparticles and reduced graphene nanosheets into a nanocomposite for highly sensitive l-phenylalanine biosensing. Int J Electrochem Sci 10:6833–6843

    CAS  Google Scholar 

  206. Naghib SM, Rabiee M, Omidinia E (2014) Electroanalytical validation of a novel nanobiosensing strategy and direct electrochemistry of phenylalanine dehydrogenase for clinical diagnostic applications. Int J Electrochem Sci 9:2301–2315

    Google Scholar 

  207. Naghib SM (2019) Two-dimensional functionalised methacrylated graphene oxide nanosheets as simple and inexpensive electrodes for biosensing applications. Micro Nano Lett 14:462–465

    Article  CAS  Google Scholar 

  208. Naghib SM, Rabiee M, Omidinia E et al (2012) Biofunctionalization of dextran-based polymeric film surface through enzyme immobilization for phenylalanine determination. Int J Electrochem Sci 7:120–135

    CAS  Google Scholar 

  209. Naghib SM, Rabiee M, Omidinia E, Khoshkenar P (2012) Investigation of a biosensor based on phenylalanine dehydrogenase immobilized on a polymer-blend film for phenylketonuria diagnosis. Electroanalysis 24:407–417

    Article  CAS  Google Scholar 

  210. Naghib SM, Rahmanian M, Keivan MA et al (2016) Novel Magnetic Nanocomposites Comprising Reduced Graphene Oxide/Fe3O4/Gelatin Utilized in Ultrasensitive Non- Enzymatic Biosensing. Int J Electrochem Sci 11:10256–10269

    Article  CAS  Google Scholar 

  211. Naghib SM, Parnian E, Keshvari H et al (2018) Synthesis, characterization and electrochemical evaluation of polyvinylalchol/graphene oxide/silver nanocomposites for glucose biosensing application. Int J Electrochem Sci 13:1013–1026

    Article  CAS  Google Scholar 

  212. Vahid NF, Marvi MR, Naimi-Jamal MR et al (2018) Effect of surfactant type on buckypaper electrochemical performance. Micro Nano Lett. 13:927–930

    Article  CAS  Google Scholar 

  213. Ates M (2013) A review study of (bio) sensor systems based on conducting polymers. Mater Sci Eng, C 33:1853–1859

    Article  CAS  Google Scholar 

  214. Aydemir N, Malmström J, Travas-Sejdic J (2016) Conducting polymer based electrochemical biosensors. Phys Chem Chem Phys 18:8264–8277

    Article  CAS  Google Scholar 

  215. Hui Y, Bian C, Xia S et al (2018) Synthesis and electrochemical sensing application of poly (3, 4-ethylenedioxythiophene)-based materials: a review. Anal Chim Acta 1022:1–19

    Article  CAS  Google Scholar 

  216. Askari E (2018) A novel approach to facile synthesis and biosensing of the protein-regulated graphene. Int J Electrochem Sci 2017:886–897

    Article  CAS  Google Scholar 

  217. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763

    Article  CAS  Google Scholar 

  218. Vreeland RF, Atcherley CW, Russell WS et al (2015) Biocompatible PEDOT: nafion composite electrode coatings for selective detection of neurotransmitters in vivo. Anal Chem 87:2600–2607

    Article  CAS  Google Scholar 

  219. Park J, Kim HK, Son Y (2008) Glucose biosensor constructed from capped conducting microtubules of PEDOT. Sensors Actuators B Chem 133:244–250

    Article  CAS  Google Scholar 

  220. Moczko E, Istamboulie G, Calas-Blanchard C et al (2012) Biosensor employing screen-printed PEDOT: pSS for sensitive detection of phenolic compounds in water. J Polym Sci, Part A: Polym Chem 50:2286–2292

    Article  CAS  Google Scholar 

  221. Cui M, Song Z, Wu Y et al (2016) A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly (ethylene glycol) doped conducting polymer PEDOT. Biosens Bioelectron 79:736–741

    Article  CAS  Google Scholar 

  222. Kim S, Oh W, Jeong YS, Jang J (2013) Dual-Functional Poly (3, 4-ethylenedioxythiophene)/MnO2 Nanoellipsoids for Enhancement of Neurite Outgrowth and Exocytosed Biomolecule Sensing in PC12 Cells. Adv Funct Mater 23:1947–1956

    Article  CAS  Google Scholar 

  223. Wang G, Han R, Su X et al (2017) Zwitterionic peptide anchored to conducting polymer PEDOT for the development of antifouling and ultrasensitive electrochemical DNA sensor. Biosens Bioelectron 92:396–401

    Article  CAS  Google Scholar 

  224. Ogata AF, Edgar JM, Majumdar S et al (2017) Virus-enabled biosensor for human serum albumin. Anal Chem 89:1373–1381

    Article  CAS  Google Scholar 

  225. Flampouri E, Kintzios S (2011) Nafion and Polylysine treated PEDOT mammalian cell biosensor. Procedia Eng 25:976–979

    Article  CAS  Google Scholar 

  226. Ganesana M, Trikantzopoulos E, Venton BJ (2017) PEDOT: nafion Coated Microelectrode Biosensor for in Vivo Monitoring of Glutamate Release in Brain. Procedia Technol. 27:229

    Article  Google Scholar 

  227. Gupta P, Bharti A, Kaur N et al (2018) An electrochemical aptasensor based on gold nanoparticles and graphene oxide doped poly (3, 4-ethylenedioxythiophene) nanocomposite for detection of MUC1. J Electroanal Chem 813:102–108

    Article  CAS  Google Scholar 

  228. Mathiyarasu J, Senthilkumar S, Phani KLN, Yegnaraman V (2007) PEDOT-Au nanocomposite films for electrochemical sensing of dopamine and uric acid. J Nanosci Nanotechnol 7:2206–2210

    Article  CAS  Google Scholar 

  229. Chen Y, Gai P, Jin L et al (2013) Fabrication of PEDOT nanowhiskers for electrical connection of the hemoglobin active center for H 2 O 2 electrochemical biosensing. J Mater Chem B 1:3451–3457

    Article  CAS  Google Scholar 

  230. Schmitt K, Schirmer B, Hoffmann C et al (2007) Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions. Biosens Bioelectron 22:2591–2597

    Article  CAS  Google Scholar 

  231. Guo X, Liu J, Liu F et al (2017) Label-free and sensitive sialic acid biosensor based on organic electrochemical transistors. Sensors Actuators B Chem 240:1075–1082

    Article  CAS  Google Scholar 

  232. Arter JA, Taggart DK, McIntire TM et al (2010) Virus-PEDOT nanowires for biosensing. Nano Lett 10:4858–4862

    Article  CAS  Google Scholar 

  233. Jiang F, Yue R, Du Y et al (2013) A one-pot ‘green’ synthesis of Pd-decorated PEDOT nanospheres for nonenzymatic hydrogen peroxide sensing. Biosens Bioelectron 44:127–131

    Article  CAS  Google Scholar 

  234. Yang T, Gao Y, Liu Z et al (2017) Three-dimensional gold nanoparticles/prussian blue-poly (3, 4-ethylenedioxythiophene) nanocomposite as novel redox matrix for label-free electrochemical immunoassay of carcinoembryonic antigen. Sens Actuators B Chem 239:76–84

    Article  CAS  Google Scholar 

  235. Yang L, Wang H, Lü H, Hui N (2020) Phytic acid doped poly (3, 4-ethylenedioxythiophene) modified with copper nanoparticles for enzymeless amperometric sensing of glucose. Microchim Acta 187:49

    Article  CAS  Google Scholar 

  236. Li J, Bi X, Tamulevičius S et al (2019) Fabrication of a biocompatible and continuous glucose biosensor with the poly (3, 4-ethylenedioxythiophene) modified electrode. J Taiwan Inst Chem Eng 104:1–7

    Article  CAS  Google Scholar 

  237. Wu L-N, Zhong J-P, Waqas M et al (2019) Controllable synthesis of six corner star-like Cu2O/PEDOT-MWCNT composites and their performance toward electrochemical glucose sensing. Electrochim Acta 318:837–846

    Article  CAS  Google Scholar 

  238. Sheng L, Li Z, Meng A, Xu Q (2018) Ultrafast responsive and highly sensitive enzyme-free glucose sensor based on a novel Ni (OH) 2@ PEDOT-rGO nanocomposite. Sensors Actuators B Chem 254:1206–1215

    Article  CAS  Google Scholar 

  239. Amirzadeh Z, Javadpour S, Shariat MH, Knibbe R (2018) Non-enzymatic glucose sensor based on copper oxide and multi-wall carbon nanotubes using PEDOT: pSS matrix. Synth Met 245:160–166

    Article  CAS  Google Scholar 

  240. Meng A, Yuan X, Li Z et al (2019) Direct growth of 3D porous (Ni-Co) 3S4 nanosheets arrays on rGO-PEDOT hybrid film for high performance non-enzymatic glucose sensing. Sensors Actuators B Chem 291:9–16

    Article  CAS  Google Scholar 

  241. Gao X, Du X, Liu D et al (2020) Core-shell gold-nickel nanostructures as highly selective and stable nonenzymatic glucose sensor for fermentation process. Sci Rep 10:1–10

    Article  CAS  Google Scholar 

  242. Chiu W-T, Chang T-FM, Sone M et al (2020) Roles of TiO2 in the highly robust Au nanoparticles-TiO2 modified polyaniline electrode towards non-enzymatic sensing of glucose. Talanta 212:120780

    Article  CAS  Google Scholar 

  243. Ayaz S, Karakaya S, Emir G et al (2020) A novel enzyme-free FI-amperometric glucose biosensor at Cu nanoparticles modified graphite pencil electrode. Microchem J 154:104586

    Article  CAS  Google Scholar 

  244. Kausaite-Minkstimiene A, Glumbokaite L, Ramanaviciene A, Ramanavicius A (2020) Reagent-less amperometric glucose biosensor based on nanobiocomposite consisting of poly (1, 10-phenanthroline-5, 6-dione), poly (pyrrole-2-carboxylic acid), gold nanoparticles and glucose oxidase. Microchem J 154:104665

    Article  CAS  Google Scholar 

  245. Huang H, Li T, Jiang M et al (2020) Construction of flexible enzymatic electrode based on gradient hollow fiber membrane and multi-wall carbon tubes meshes. Biosens Bioelectron 152:112001

    Article  CAS  Google Scholar 

  246. Şavk A, Aydın H, Cellat K, Şen F (2020) A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite. J Mol Liq 300:112355

    Article  CAS  Google Scholar 

  247. Meng T, Jia H, Ye H et al (2020) Facile preparation of CoMoO4 nanorods at macroporous carbon hybrid electrocatalyst for non-enzymatic glucose detection. J Colloid Interface Sci 560:1–10

    Article  CAS  Google Scholar 

  248. Anastasova S, Crewther B, Bembnowicz P et al (2017) A wearable multisensing patch for continuous sweat monitoring. Biosens Bioelectron 93:139–145

    Article  CAS  Google Scholar 

  249. Aleeva Y, Maira G, Scopelliti M et al (2018) Amperometric biosensor and front-end electronics for remote glucose monitoring by crosslinked PEDOT-Glucose oxidase. IEEE Sens J 18:4869–4878

    Article  CAS  Google Scholar 

  250. Pires N, Dong T, Hanke U, Hoivik N (2013) Integrated optical microfluidic biosensor using a polycarbazole photodetector for point-of-care detection of hormonal compounds. J Biomed Opt 18:97001

    Article  CAS  Google Scholar 

  251. Zhang L, Wen Y, Yao Y et al (2014) Synthesis and Characterization of PEDOT Derivative with Carboxyl Group and Its Chemo/Bio Sensing Application as Nanocomposite, Immobilized Biological and Enhanced Optical Materials. Electrochim Acta 116:343–354

    Article  CAS  Google Scholar 

  252. Kalantari E, Naghib SM (2019) A comparative study on biological properties of novel nanostructured monticellite-based composites with hydroxyapatite bioceramic. Mater Sci Eng, C 98:1087–1096

    Article  CAS  Google Scholar 

  253. Kalantari E, Naghib SM, Iravani NJ, Esmaeili R, Naimi-Jamal MR, Mozafari M (2019) Biocomposites based on hydroxyapatite matrix reinforced with nanostructured monticellite (CaMgSiO4) for biomedical applications: synthesis, characterization and biological studies. Mater Sci Eng, C. https://doi.org/10.1016/j.msec.2019.109912

    Article  Google Scholar 

  254. Rahmanian M, seyfoori A, Dehghan MM et al (2019) Multifunctional gelatin–tricalcium phosphate porous nanocomposite scaffolds for tissue engineering and local drug delivery: in vitro and in vivo studies. J Taiwan Inst Chem Eng 101:214–220

    Article  CAS  Google Scholar 

  255. Kalantari E, Naghib SM, Iravani NJ et al (2018) Nanostructured monticellite for tissue engineering applications – Part II: molecular and biological characteristics. Ceram Int 44:14704–14711

    Article  CAS  Google Scholar 

  256. Kalantari E, Naghib SM, Naimi-Jamal MR et al (2018) Nanostructured monticellite for tissue engineering applications - Part I: microstructural and physicochemical characteristics. Ceram Int 44:12731–12738

    Article  CAS  Google Scholar 

  257. Naghib SM, Ansari M, Pedram A et al (2012) Bioactivation of 304 stainless steel surface through 45S5 bioglass coating for biomedical applications. Int J Electrochem Sci 7:2890–2903

    CAS  Google Scholar 

  258. Askari E, Naghib SM, Seyfoori A et al (2019) Ultrasonic-assisted synthesis and in vitro biological assessments of a novel herceptin-stabilized graphene using three dimensional cell spheroid. Ultrason Sonochem 58:104615

    Article  CAS  Google Scholar 

  259. Seyfoori A, Ebrahimi SAS, Omidian S, Naghib SM (2019) Multifunctional magnetic ZnFe2 O4-hydroxyapatite nanocomposite particles for local anti-cancer drug delivery and bacterial infection inhibition: an in vitro study. J Taiwan Inst Chem Eng. 96:503–508

    Article  CAS  Google Scholar 

  260. Rahmanian M, Naghib SM, Seyfoori A et al (2017) Tricalcium phosphate nanostructures loaded with bisphosphonate as potential anticancer agents. J Ceram Sci Technol 8:505–512

    Google Scholar 

  261. Mamaghani KR, Naghib SM, Zahedi A et al (2018) GelMa/PEGDA containing graphene oxide as an IPN hydrogel with superior mechanical performance. Mater Today Proc 5(7):15790–15799

    Article  CAS  Google Scholar 

  262. Kalantari E, Naghib SM, Naimi-Jamal MR et al (2018) Nanostructured monticellite: an emerging player in tissue engineering. Mater Today Proc 5:15744–15753

    Article  CAS  Google Scholar 

  263. Rahimi Mamaghani K, Morteza Naghib S, Zahedi A, Mozafari M. Synthesis and microstructural characterization of GelMa/PEGDA hybrid hydrogel containing graphene oxide for biomedical purposes. In: Materials Today: Proceedings

  264. Guo B, Ma PX (2018) Conducting polymers for tissue engineering. Biomacromol 19:1764–1782

    Article  CAS  Google Scholar 

  265. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M et al (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 5:e17–e35

    Article  CAS  Google Scholar 

  266. Kim D, Richardson-Burns SM, Hendricks JL et al (2007) Effect of immobilized nerve growth factor on conductive polymers: electrical properties and cellular response. Adv Funct Mater 17:79–86

    Article  CAS  Google Scholar 

  267. Bolin MH, Svennersten K, Wang X et al (2009) Nano-fiber scaffold electrodes based on PEDOT for cell stimulation. Sensors Actuators B Chem 142:451–456

    Article  CAS  Google Scholar 

  268. Karagkiozaki V, Karagiannidis PG, Gioti M, et al. Bioelectronics meets nanomedicine for cardiovascular implants: PEDOT-based nanocoatings for tissue regeneration. Biochim Biophys Acta (BBA)-General Subj. 2013; 1830:4294–4304

    Article  CAS  Google Scholar 

  269. Heo DN, Lee S-J, Timsina R, et al. Development of 3D printable conductive hydrogel with crystallized PEDOT: PSS for neural tissue engineering. Mater Sci Eng C

  270. Abedi A, Hasanzadeh M (2019) Tayebi L. PSS Tissue Engineering Scaffolds. Mater Chem Phys, Conductive Nanofibrous Chitosan/PEDOT, p 121882

    Google Scholar 

  271. Chen C, Zhang T, Zhang Q et al (2015) Three-dimensional BC/PEDOT composite nanofibers with high performance for electrode–cell interface. ACS Appl Mater Interfaces 7:28244–28253

    Article  CAS  Google Scholar 

  272. Chen C, Zhang T, Zhang Q et al (2016) Biointerface by cell growth on graphene oxide doped bacterial cellulose/poly (3, 4-ethylenedioxythiophene) nanofibers. ACS Appl Mater Interfaces 8:10183–10192

    Article  CAS  Google Scholar 

  273. Kim YS, Cho K, Lee HJ et al (2016) Highly conductive and hydrated PEG-based hydrogels for the potential application of a tissue engineering scaffold. React Funct Polym 109:15–22

    Article  CAS  Google Scholar 

  274. Xu C, Guan S, Wang S et al (2018) Biodegradable and electroconductive poly (3, 4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering. Mater Sci Eng, C 84:32–43

    Article  CAS  Google Scholar 

  275. Wang S, Guan S, Zhu Z et al (2017) Hyaluronic acid doped-poly(3,4-ethylenedioxythiophene)/chitosan/gelatin (PEDOT-HA/Cs/Gel) porous conductive scaffold for nerve regeneration. Mater Sci Eng, C 71:308–316

    Article  CAS  Google Scholar 

  276. Gooneh-Farahani S, Naimi-Jamal MR, Naghib SM (2019) Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: a review. Expert Opin Drug Deliv 16:79–99

    Article  CAS  Google Scholar 

  277. Zeinali Kalkhoran AH, Vahidi O, Naghib SM (2018) A new mathematical approach to predict the actual drug release from hydrogels. Eur J Pharm Sci 111:303–310

    Article  CAS  Google Scholar 

  278. Zeinali Kalkhoran AH, Naghib SM, Vahidi O, Rahmanian M (2018) Synthesis and characterization of graphene-grafted gelatin nanocomposite hydrogels as emerging drug delivery systems. Biomed Phys Eng Express. 4:055017

    Article  Google Scholar 

  279. Entezami AA, Massoumi B (2006) Artificial muscles, biosensors and drug delivery systems based on conducting polymers: a review. Iran Polym J 15:13–30

    CAS  Google Scholar 

  280. Zhao Y, Tavares AC, Gauthier MA (2016) Nano-engineered electro-responsive drug delivery systems. J Mater Chem B 4:3019–3030

    Article  CAS  Google Scholar 

  281. Boehler C, Asplund M (2015) A detailed insight into drug delivery from PEDOT based on analytical methods: effects and side effects. J Biomed Mater Res, Part A 103:1200–1207

    Article  CAS  Google Scholar 

  282. Krukiewicz K, Cichy M, Ruszkowski P et al (2017) Betulin-loaded PEDOT films for regional chemotherapy. Mater Sci Eng, C 73:611–615

    Article  CAS  Google Scholar 

  283. Chen R, Canales A, Anikeeva P (2017) Neural recording and modulation technologies. Nat Rev Mater 2:16093

    Article  CAS  Google Scholar 

  284. Kozai TDY, Catt K, Du Z et al (2016) Chronic in vivo evaluation of PEDOT/CNT for stable neural recordings. IEEE Trans Biomed Eng 63:111–119

    Article  Google Scholar 

  285. Venkatraman S, Hendricks J, King ZA et al (2011) In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording. IEEE Trans Neural Syst Rehabil Eng 19:307–316

    Article  Google Scholar 

  286. Ludwig KA, Uram JD, Yang J et al (2006) Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly (3, 4-ethylenedioxythiophene)(PEDOT) film. J Neural Eng 3:59

    Article  Google Scholar 

  287. Castagnola V, Descamps E, Lecestre A et al (2015) Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording. Biosens Bioelectron 67:450–457

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Morteza Naghib or Kyong Yop Rhee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimzadeh, Z., Naghib, S.M., Zare, Y. et al. An overview on the synthesis and recent applications of conducting poly(3,4-ethylenedioxythiophene) (PEDOT) in industry and biomedicine. J Mater Sci 55, 7575–7611 (2020). https://doi.org/10.1007/s10853-020-04561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04561-2

Navigation