Abstract
The fabrication of brittle magnetocaloric materials into heat exchangers is currently challenging for conventional manufacturing techniques. In the present study, we demonstrated that selective laser melting (SLM), an emerging 3D printing technique, offers a new and promising solution to fabricate the (Mn,Fe)2(P,Si) magnetocaloric alloys for magnetic refrigeration applications. The hexagonal (Mn,Fe)2(P,Si) phase, which shows a first-order magnetic transition, is successfully formed in the SLM-printed samples with a very small amount of impurity phase (less than 2% in volume fraction). The SLM processing parameters (e.g., the laser power and scanning speed) have a strong influence on the microstructure, magnetic phase transition and magnetocaloric properties of the printed samples. The microscopic mechanism underlying the changes in the microstructure and phase transition temperature has also been discussed. Besides that, a large isothermal entropy change, more than three times higher than that of the benchmark Gd material in a field change of 1 and 2 T, has been obtained in the SLM-printed samples.






Similar content being viewed by others
References
Guillou F, Pathak AK, Paudyal D, Mudryk Y, Wilhelm F, Rogalev A, Pecharsky VK (2018) Non-hysteretic first-order phase transition with large latent heat and giant low-field magnetocaloric effect. Nat Commun 9, 2925
Gottschall T, Gràcia-Condal A, Fries M, Taubel A, Pfeuffer L, Mañosa L, Planes A, Skokov KP, Gutfleisch O (2018) A multicaloric cooling cycle that exploits thermal hysteresis. Nat Mater 17:929–934
Liu J, Gong Y, You Y, You X, Huang B, Miao X, Xu G, Xu F, Brück E (2019) Giant reversible magnetocaloric effect in MnNiGe-based materials: Minimizing thermal hysteresis via crystallographic compatibility modulation. Acta Mater 174:450–458
Pecharsky VK, Gschneidner KA Jr, Pecharsky AO, Tishin AM (2001) Thermodynamics of the magnetocaloric effect. Phys Rev B 64, 144406
Law JY, Franco V, Moreno-Ramírez LM, Conde A, Karpenkov DY, Radulov I, Skokov KP, Gutfleisch O (2018) A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect. Nat Commun 9, 2680
Xie Y, Fan J, Xu L, Zhang X, Xu R, Zhu Y, Tang R, Wang C, Ma C, Pi L, Zhang Y, Yang H (2019) Unambiguous determining the Curie point in perovskite manganite with second-order phase transition by scaling method. Phys Lett A 383, 125843
Si X, Liu Y, Ma X, Lin J, Yang J, Zhou T (2018) The analysis of magnetic entropy change and long-range ferromagnetic order in Mn1−xAgxCoGe. J Mater Sci 54:3196–3210. https://doi.org/10.1007/s10853-018-3053-2
Tegus O, Brück E, Buschow KHJ, de Boer FR (2002) Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415:150–152
Fries M, Gottschall T, Scheibel F, Pfeuffer L, Skokov KP, Skourski I, Acet M, Farle M, Wosnitza J, Gutfleisch O (2019) Dynamics of the magnetoelastic phase transition and adiabatic temperature change in Mn1.3Fe0.7P0.5Si0.55. J Magn Magn Mater 477:287–291
Hu S, Miao X, Liu J, Ou Z, Cong M, Haschuluu O, Gong Y, Qian F, You Y, Zhang Y, Xu F, Brück E (2019) Small hysteresis and giant magnetocaloric effect in Nb-substituted (Mn, Fe) 2 (P, Si) alloys. Intermetallics 114, 106602
Miao XF, Hu SH, Xu F, Brück E (2018) Overview of magnetoelastic coupling in (Mn, Fe)2(P, Si)-type magnetocaloric materials. Rare Met 37:723–733
Kitanovski A, Tušek J, Tomc U, Plaznik U, Ozbolt M, Poredoš A (2015) Magnetocaloric Energy Conversion, 1st edn. Springer, New York
Moore JD, Klemm D, Lindackers D, Grasemann S, Träger R, Eckert J, Löber L, Scudino S, Katter M, Barcza A, Skokov KP, Gutfleisch O (2013) Selective laser melting of La(Fe Co, Si)13 geometries for magnetic refrigeration. J Appl Phys 114, 043907
Miao XF, Sepehri-Amin H, Hono K (2017) Structural origin of hysteresis for hexagonal (Mn, Fe)2(P, Si) magneto-caloric compound. Scr Mater 138:96–99
Fries M, Pfeuffer L, Bruder E, Gottschall T, Ener S, Diop LVB, Gröb T, Skokov KP, Gutfleisch O (2017) Microstructural and magnetic properties of Mn–Fe–P–Si (Fe2P-type) magnetocaloric compounds. Acta Mater 132:222–229
Skokov KP, Karpenkov DY, Kuz’min MD, Radulov IA, Gottschall T, Kaeswurm B, Fries M, Gutfleisch O (2014) Heat exchangers made of polymer-bonded La(Fe, Si)13. J Appl Phys 115, 17A941
Zhang H, Sun Y, Niu E, Hu F, Sun J, Shen B (2014) Enhanced mechanical properties and large magnetocaloric effects in bonded La(Fe, Si)13-based magnetic refrigeration materials. Appl Phys Lett 104, 062407
Pulko B, Tušek J, Moore JD, Weise B, Skokov K, Mityashkin O, Kitanovski A, Favero C, Fajfar P, Gutfleisch O, Waske A, Poredoš A (2015) Epoxy-bonded La–Fe–Co–Si magnetocaloric plates. J Magn Magn Mater 375:65–73
Krautz M, Funk A, Skokov KP, Gottschall T, Eckert J, Gutfleisch O, Waske A (2015) A new type of La(Fe, Si)13-based magnetocaloric composite with amorphous metallic matrix. Scr Mater 95:50–53
Zhang H, Liu J, Zhang M, Shao Y, Li Y, Yan A (2016) LaFe11.6Si1.4Hy/Sn magnetocaloric composites by hot pressing. Scr Mater 120:58–61
Radulov IA, Karpenkov DY, Skokov KP, Karpenkov AY, Braun T, Brabänder V, Gottschall T, Pabst M, Stoll B, Gutfleisch O (2017) Production and properties of metal-bonded La(Fe, Mn, Si)13Hx composite material. Acta Mater 127:389–399
Wang Y, Zhang H, Liu E, Zhong X, Tao K, Wu M, Xing C, Xiao Y, Liu J, Long Y (2018) Outstanding comprehensive performance of La(Fe, Si)13Hy/In composite with durable service life for magnetic refrigeration. Adv Electron Mater 4, 1700636
Wieland S, Petzoldt F (2017) Powder-extrusion and sintering of magnetocaloric LaCe(FeMnSi)13 alloy. J Alloys Compd 719:182–188
Mostafaei A, Rodriguez De Vecchis P, Stevens EL, Chmielus M (2018) Sintering regimes and resulting microstructure and properties of binder jet 3D printed Ni–Mn–Ga magnetic shape memory alloys. Acta Mater 154:355–364
Taylor SL, Shah RN, Dunand DC (2018) Ni–Mn–Ga micro-trusses via sintering of 3D-printed inks containing elemental powders. Acta Mater 143:20–29
Gibson I, Rosen D, Stucker B (2015) Additive Manufacturing Technologies, 2nd edn. Springer, New York
Mikler CV, Chaudhary V, Borkar T, Soni V, Jaeger D, Chen X, Contieri R, Ramanujan RV, Banerjee R (2017) Laser additive manufacturing of magnetic materials. JOM 69:532–543
Polatidis E, Čapek J, Arabi-Hashemi A, Leinenbach C, Strobl M (2020) High ductility and transformation-induced-plasticity in metastable stainless steel processed by selective laser melting with low power. Scr Mater 176:53–57
Leung CLA, Marussi S, Towrie M, Atwood RC, Withers PJ, Lee PD (2019) The effect of powder oxidation on defect formation in laser additive manufacturing. Acta Mater 166:294–305
Hou H, Simsek E, Ma T, Johnson NS, Qian S, Cissé C, Stasak D, Al Hasan N, Zhou L, Hwang Y, Radermacher R, Levitas VI, Kramer MJ, Zaeem MA, Stebner AP, Ott RT, Cui J, Takeuchi I (2019) Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science 366:1116–1121
Gustmann T, Neves A, Kühn U, Gargarella P, Kiminami CS, Bolfarini C, Eckert J, Pauly S (2016) Influence of processing parameters on the fabrication of a Cu–Al–Ni–Mn shape-memory alloy by selective laser melting. Addit Manuf 11:23–31
Haubrich J, Gussone J, Barriobero-Vila P, Kürnsteiner P, Jägle EA, Raabe D, Schell N, Requena G (2019) The role of lattice defects, element partitioning and intrinsic heat effects on the microstructure in selective laser melted Ti-6Al-4V. Acta Mater 167:136–148
Tucho WM, Hansen V (2018) Characterization of SLM-fabricated Inconel 718 after solid solution and precipitation hardening heat treatments. J Mater Sci 54:823–839. https://doi.org/10.1007/s10853-018-2851-x
Harrison NJ, Todd I, Mumtaz K (2017) Thermal expansion coefficients in Invar processed by selective laser melting. J Mater Sci 52:10517–10525. https://doi.org/10.1007/s10853-017-1169-4
Li Y, Liang H, Tian Z, Yang Y, Xie D, Zhu L, Shen L, Wang C (2019) Mechanical properties of in-Situ synthesis of Ti-Ti3Al metal composite prepared by selective laser melting. Metals 9, 1121
Li J, Shen L, Liu Z, Liang H, Li Y, Han X (2018) Microstructure, microhardness, and wear performance of zirconia reinforced pure titanium composites prepared by selective laser melting. Mater Res Express 6, 036520
Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192:55–69
Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rap Prototyp J 11:26–36
Attar H, Calin M, Zhang LC, Scudino S, Eckert J (2014) Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater Sci Eng A 593:170–177
Dung NH, Ou ZQ, Caron L, Zhang L, Thanh DTC, de Wijs GA, de Groot RA, Buschow KHJ, Brück E (2011) Mixed magnetism for refrigeration and energy conversion. Adv Energy Mater 1:1215–1219
Dung NH, Zhang L, Ou ZQ, Brück E (2012) Magnetoelastic coupling and magnetocaloric effect in hexagonal Mn-Fe-P-Si compounds. Scr Mater 67:975–978
Ou ZQ, Zhang L, Dung NH, Caron L, Brück E (2017) Structure, magnetism and magnetocalorics of Fe-rich (Mn, Fe)1.95P1−xSix melt-spun ribbons. J Alloys Compd 710:446–451
Miao XF, Caron L, Roy P, Dung NH, Zhang L, Kockelmann WA, de Groot RA, van Dijk NH, Brück E (2014) Tuning the phase transition in transition-metal-based magnetocaloric compounds. Phys Rev B 89, 174429
Guillou F, Porcari G, Yibole H, van Dijk NH, Brück E (2014) Taming the first-order transition in giant magnetocaloric materials. Adv Mater 26:2671–2675
Pecharsky VK, Gschneidner KA Jr (1997) Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett 78:4494–4497
Boeije MFJ, Roy P, Guillou F, Yibole H, Miao XF, Caron L, Banerjee D, van Dijk NH, de Groot RA, Brück E (2016) Efficient room-temperature cooling with magnets. Chem Mater 28:4901–4905
Caron L, Ou ZQ, Nguyen TT, Cam Thanh DT, Tegus O, Brück E (2009) On the determination of the magnetic entropy change in materials with first-order transitions. J Magn Magn Mater 321:3559–3566
Gschneidner KA, Pecharsky VK (2000) Magnetocaloric materials. Annu Rev Mater Sci 30:387–429
Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O (2012) Giant magnetocaloric effect driven by structural transitions. Nat Mater 11:620–626
Lai J, Huang B, Miao X, Van Thang N, You X, Maschek M, van Eijck L, Zeng D, van Dijk N, Brück E (2019) Combined effect of annealing temperature and vanadium substitution for mangetocaloric Mn1.2–xVxFe0.75P0.5Si0.5 alloys. J Alloys Compd 803:671–677
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Numbers 51801102, U1832191), the Natural Science Foundation of Jiangsu Province (Grant Number BK20180491) and the Open Fund of Large Facilities in Nanjing University of Science and Technology.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
They authors declare that they have no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Miao, X., Wang, W., Liang, H. et al. Printing (Mn,Fe)2(P,Si) magnetocaloric alloys for magnetic refrigeration applications. J Mater Sci 55, 6660–6668 (2020). https://doi.org/10.1007/s10853-020-04488-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-020-04488-8


