Skip to main content

Advertisement

Log in

Printing (Mn,Fe)2(P,Si) magnetocaloric alloys for magnetic refrigeration applications

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fabrication of brittle magnetocaloric materials into heat exchangers is currently challenging for conventional manufacturing techniques. In the present study, we demonstrated that selective laser melting (SLM), an emerging 3D printing technique, offers a new and promising solution to fabricate the (Mn,Fe)2(P,Si) magnetocaloric alloys for magnetic refrigeration applications. The hexagonal (Mn,Fe)2(P,Si) phase, which shows a first-order magnetic transition, is successfully formed in the SLM-printed samples with a very small amount of impurity phase (less than 2% in volume fraction). The SLM processing parameters (e.g., the laser power and scanning speed) have a strong influence on the microstructure, magnetic phase transition and magnetocaloric properties of the printed samples. The microscopic mechanism underlying the changes in the microstructure and phase transition temperature has also been discussed. Besides that, a large isothermal entropy change, more than three times higher than that of the benchmark Gd material in a field change of 1 and 2 T, has been obtained in the SLM-printed samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Guillou F, Pathak AK, Paudyal D, Mudryk Y, Wilhelm F, Rogalev A, Pecharsky VK (2018) Non-hysteretic first-order phase transition with large latent heat and giant low-field magnetocaloric effect. Nat Commun 9, 2925

    CAS  Google Scholar 

  2. Gottschall T, Gràcia-Condal A, Fries M, Taubel A, Pfeuffer L, Mañosa L, Planes A, Skokov KP, Gutfleisch O (2018) A multicaloric cooling cycle that exploits thermal hysteresis. Nat Mater 17:929–934

    CAS  Google Scholar 

  3. Liu J, Gong Y, You Y, You X, Huang B, Miao X, Xu G, Xu F, Brück E (2019) Giant reversible magnetocaloric effect in MnNiGe-based materials: Minimizing thermal hysteresis via crystallographic compatibility modulation. Acta Mater 174:450–458

    Google Scholar 

  4. Pecharsky VK, Gschneidner KA Jr, Pecharsky AO, Tishin AM (2001) Thermodynamics of the magnetocaloric effect. Phys Rev B 64, 144406

    Google Scholar 

  5. Law JY, Franco V, Moreno-Ramírez LM, Conde A, Karpenkov DY, Radulov I, Skokov KP, Gutfleisch O (2018) A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect. Nat Commun 9, 2680

    Google Scholar 

  6. Xie Y, Fan J, Xu L, Zhang X, Xu R, Zhu Y, Tang R, Wang C, Ma C, Pi L, Zhang Y, Yang H (2019) Unambiguous determining the Curie point in perovskite manganite with second-order phase transition by scaling method. Phys Lett A 383, 125843

    Google Scholar 

  7. Si X, Liu Y, Ma X, Lin J, Yang J, Zhou T (2018) The analysis of magnetic entropy change and long-range ferromagnetic order in Mn1xAgxCoGe. J Mater Sci 54:3196–3210. https://doi.org/10.1007/s10853-018-3053-2

    Article  CAS  Google Scholar 

  8. Tegus O, Brück E, Buschow KHJ, de Boer FR (2002) Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415:150–152

    CAS  Google Scholar 

  9. Fries M, Gottschall T, Scheibel F, Pfeuffer L, Skokov KP, Skourski I, Acet M, Farle M, Wosnitza J, Gutfleisch O (2019) Dynamics of the magnetoelastic phase transition and adiabatic temperature change in Mn1.3Fe0.7P0.5Si0.55. J Magn Magn Mater 477:287–291

    CAS  Google Scholar 

  10. Hu S, Miao X, Liu J, Ou Z, Cong M, Haschuluu O, Gong Y, Qian F, You Y, Zhang Y, Xu F, Brück E (2019) Small hysteresis and giant magnetocaloric effect in Nb-substituted (Mn, Fe) 2 (P, Si) alloys. Intermetallics 114, 106602

    CAS  Google Scholar 

  11. Miao XF, Hu SH, Xu F, Brück E (2018) Overview of magnetoelastic coupling in (Mn, Fe)2(P, Si)-type magnetocaloric materials. Rare Met 37:723–733

    CAS  Google Scholar 

  12. Kitanovski A, Tušek J, Tomc U, Plaznik U, Ozbolt M, Poredoš A (2015) Magnetocaloric Energy Conversion, 1st edn. Springer, New York

    Google Scholar 

  13. Moore JD, Klemm D, Lindackers D, Grasemann S, Träger R, Eckert J, Löber L, Scudino S, Katter M, Barcza A, Skokov KP, Gutfleisch O (2013) Selective laser melting of La(Fe Co, Si)13 geometries for magnetic refrigeration. J Appl Phys 114, 043907

    Google Scholar 

  14. Miao XF, Sepehri-Amin H, Hono K (2017) Structural origin of hysteresis for hexagonal (Mn, Fe)2(P, Si) magneto-caloric compound. Scr Mater 138:96–99

    CAS  Google Scholar 

  15. Fries M, Pfeuffer L, Bruder E, Gottschall T, Ener S, Diop LVB, Gröb T, Skokov KP, Gutfleisch O (2017) Microstructural and magnetic properties of Mn–Fe–P–Si (Fe2P-type) magnetocaloric compounds. Acta Mater 132:222–229

    CAS  Google Scholar 

  16. Skokov KP, Karpenkov DY, Kuz’min MD, Radulov IA, Gottschall T, Kaeswurm B, Fries M, Gutfleisch O (2014) Heat exchangers made of polymer-bonded La(Fe, Si)13. J Appl Phys 115, 17A941

    Google Scholar 

  17. Zhang H, Sun Y, Niu E, Hu F, Sun J, Shen B (2014) Enhanced mechanical properties and large magnetocaloric effects in bonded La(Fe, Si)13-based magnetic refrigeration materials. Appl Phys Lett 104, 062407

    Google Scholar 

  18. Pulko B, Tušek J, Moore JD, Weise B, Skokov K, Mityashkin O, Kitanovski A, Favero C, Fajfar P, Gutfleisch O, Waske A, Poredoš A (2015) Epoxy-bonded La–Fe–Co–Si magnetocaloric plates. J Magn Magn Mater 375:65–73

    CAS  Google Scholar 

  19. Krautz M, Funk A, Skokov KP, Gottschall T, Eckert J, Gutfleisch O, Waske A (2015) A new type of La(Fe, Si)13-based magnetocaloric composite with amorphous metallic matrix. Scr Mater 95:50–53

    CAS  Google Scholar 

  20. Zhang H, Liu J, Zhang M, Shao Y, Li Y, Yan A (2016) LaFe11.6Si1.4Hy/Sn magnetocaloric composites by hot pressing. Scr Mater 120:58–61

    CAS  Google Scholar 

  21. Radulov IA, Karpenkov DY, Skokov KP, Karpenkov AY, Braun T, Brabänder V, Gottschall T, Pabst M, Stoll B, Gutfleisch O (2017) Production and properties of metal-bonded La(Fe, Mn, Si)13Hx composite material. Acta Mater 127:389–399

    CAS  Google Scholar 

  22. Wang Y, Zhang H, Liu E, Zhong X, Tao K, Wu M, Xing C, Xiao Y, Liu J, Long Y (2018) Outstanding comprehensive performance of La(Fe, Si)13Hy/In composite with durable service life for magnetic refrigeration. Adv Electron Mater 4, 1700636

    Google Scholar 

  23. Wieland S, Petzoldt F (2017) Powder-extrusion and sintering of magnetocaloric LaCe(FeMnSi)13 alloy. J Alloys Compd 719:182–188

    CAS  Google Scholar 

  24. Mostafaei A, Rodriguez De Vecchis P, Stevens EL, Chmielus M (2018) Sintering regimes and resulting microstructure and properties of binder jet 3D printed Ni–Mn–Ga magnetic shape memory alloys. Acta Mater 154:355–364

    CAS  Google Scholar 

  25. Taylor SL, Shah RN, Dunand DC (2018) Ni–Mn–Ga micro-trusses via sintering of 3D-printed inks containing elemental powders. Acta Mater 143:20–29

    CAS  Google Scholar 

  26. Gibson I, Rosen D, Stucker B (2015) Additive Manufacturing Technologies, 2nd edn. Springer, New York

    Google Scholar 

  27. Mikler CV, Chaudhary V, Borkar T, Soni V, Jaeger D, Chen X, Contieri R, Ramanujan RV, Banerjee R (2017) Laser additive manufacturing of magnetic materials. JOM 69:532–543

    CAS  Google Scholar 

  28. Polatidis E, Čapek J, Arabi-Hashemi A, Leinenbach C, Strobl M (2020) High ductility and transformation-induced-plasticity in metastable stainless steel processed by selective laser melting with low power. Scr Mater 176:53–57

    CAS  Google Scholar 

  29. Leung CLA, Marussi S, Towrie M, Atwood RC, Withers PJ, Lee PD (2019) The effect of powder oxidation on defect formation in laser additive manufacturing. Acta Mater 166:294–305

    CAS  Google Scholar 

  30. Hou H, Simsek E, Ma T, Johnson NS, Qian S, Cissé C, Stasak D, Al Hasan N, Zhou L, Hwang Y, Radermacher R, Levitas VI, Kramer MJ, Zaeem MA, Stebner AP, Ott RT, Cui J, Takeuchi I (2019) Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science 366:1116–1121

    CAS  Google Scholar 

  31. Gustmann T, Neves A, Kühn U, Gargarella P, Kiminami CS, Bolfarini C, Eckert J, Pauly S (2016) Influence of processing parameters on the fabrication of a Cu–Al–Ni–Mn shape-memory alloy by selective laser melting. Addit Manuf 11:23–31

    CAS  Google Scholar 

  32. Haubrich J, Gussone J, Barriobero-Vila P, Kürnsteiner P, Jägle EA, Raabe D, Schell N, Requena G (2019) The role of lattice defects, element partitioning and intrinsic heat effects on the microstructure in selective laser melted Ti-6Al-4V. Acta Mater 167:136–148

    CAS  Google Scholar 

  33. Tucho WM, Hansen V (2018) Characterization of SLM-fabricated Inconel 718 after solid solution and precipitation hardening heat treatments. J Mater Sci 54:823–839. https://doi.org/10.1007/s10853-018-2851-x

    Article  CAS  Google Scholar 

  34. Harrison NJ, Todd I, Mumtaz K (2017) Thermal expansion coefficients in Invar processed by selective laser melting. J Mater Sci 52:10517–10525. https://doi.org/10.1007/s10853-017-1169-4

    Article  CAS  Google Scholar 

  35. Li Y, Liang H, Tian Z, Yang Y, Xie D, Zhu L, Shen L, Wang C (2019) Mechanical properties of in-Situ synthesis of Ti-Ti3Al metal composite prepared by selective laser melting. Metals 9, 1121

    Google Scholar 

  36. Li J, Shen L, Liu Z, Liang H, Li Y, Han X (2018) Microstructure, microhardness, and wear performance of zirconia reinforced pure titanium composites prepared by selective laser melting. Mater Res Express 6, 036520

    Google Scholar 

  37. Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192:55–69

    CAS  Google Scholar 

  38. Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rap Prototyp J 11:26–36

    Google Scholar 

  39. Attar H, Calin M, Zhang LC, Scudino S, Eckert J (2014) Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater Sci Eng A 593:170–177

    CAS  Google Scholar 

  40. Dung NH, Ou ZQ, Caron L, Zhang L, Thanh DTC, de Wijs GA, de Groot RA, Buschow KHJ, Brück E (2011) Mixed magnetism for refrigeration and energy conversion. Adv Energy Mater 1:1215–1219

    CAS  Google Scholar 

  41. Dung NH, Zhang L, Ou ZQ, Brück E (2012) Magnetoelastic coupling and magnetocaloric effect in hexagonal Mn-Fe-P-Si compounds. Scr Mater 67:975–978

    CAS  Google Scholar 

  42. Ou ZQ, Zhang L, Dung NH, Caron L, Brück E (2017) Structure, magnetism and magnetocalorics of Fe-rich (Mn, Fe)1.95P1xSix melt-spun ribbons. J Alloys Compd 710:446–451

    CAS  Google Scholar 

  43. Miao XF, Caron L, Roy P, Dung NH, Zhang L, Kockelmann WA, de Groot RA, van Dijk NH, Brück E (2014) Tuning the phase transition in transition-metal-based magnetocaloric compounds. Phys Rev B 89, 174429

    Google Scholar 

  44. Guillou F, Porcari G, Yibole H, van Dijk NH, Brück E (2014) Taming the first-order transition in giant magnetocaloric materials. Adv Mater 26:2671–2675

    CAS  Google Scholar 

  45. Pecharsky VK, Gschneidner KA Jr (1997) Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett 78:4494–4497

    CAS  Google Scholar 

  46. Boeije MFJ, Roy P, Guillou F, Yibole H, Miao XF, Caron L, Banerjee D, van Dijk NH, de Groot RA, Brück E (2016) Efficient room-temperature cooling with magnets. Chem Mater 28:4901–4905

    CAS  Google Scholar 

  47. Caron L, Ou ZQ, Nguyen TT, Cam Thanh DT, Tegus O, Brück E (2009) On the determination of the magnetic entropy change in materials with first-order transitions. J Magn Magn Mater 321:3559–3566

    CAS  Google Scholar 

  48. Gschneidner KA, Pecharsky VK (2000) Magnetocaloric materials. Annu Rev Mater Sci 30:387–429

    CAS  Google Scholar 

  49. Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O (2012) Giant magnetocaloric effect driven by structural transitions. Nat Mater 11:620–626

    CAS  Google Scholar 

  50. Lai J, Huang B, Miao X, Van Thang N, You X, Maschek M, van Eijck L, Zeng D, van Dijk N, Brück E (2019) Combined effect of annealing temperature and vanadium substitution for mangetocaloric Mn1.2–xVxFe0.75P0.5Si0.5 alloys. J Alloys Compd 803:671–677

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Numbers 51801102, U1832191), the Natural Science Foundation of Jiangsu Province (Grant Number BK20180491) and the Open Fund of Large Facilities in Nanjing University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuefei Miao or Feng Xu.

Ethics declarations

Conflict of interest

They authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, X., Wang, W., Liang, H. et al. Printing (Mn,Fe)2(P,Si) magnetocaloric alloys for magnetic refrigeration applications. J Mater Sci 55, 6660–6668 (2020). https://doi.org/10.1007/s10853-020-04488-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04488-8