Skip to main content

Energy band gap tuning in Te-doped WS2/WSe2 heterostructures


Understanding the possibility of band-gap engineering in multilayers composed of two-dimensional materials is extremely important for modeling and creation of novel electronic and photonic devices. Stacking of WS2 and WSe2 monolayers looks particularly attractive for applications due to direct gap of resulting heterostructure, especially taking into account the indirect-gap nature of their bulk-state counterparts. We performed a theoretical investigation of chalcogen atoms replacement in WS2/WSe2 heterostructure by isovalent Te atoms in order to reveal its effects on the band gap, electronic structure and density of states . The doped heterostructures were found to preserve semiconductor properties, whereas the gap changed its nature from direct to indirect in dependence on the position and the distance between substituting Te atoms. Te atoms in the S atom positions led preferably to an indirect gap and increased its value as compared to the pristine material; upon substitution of Se atoms, the direct gap of the heterostructure is preserved but with a small reduction, whereas the substitution of both S and Se atoms changed the gap in a different way depending on Te position. This information makes possible the creation of multilayered structures with tunable gap important for a novel generation of electronic and photonic devices.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. 1

    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    CAS  Article  Google Scholar 

  2. 2

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275

    CAS  Article  Google Scholar 

  3. 3

    Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:Article 136805 (1–4)

    Article  Google Scholar 

  4. 4

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150

    CAS  Article  Google Scholar 

  5. 5

    Alidoust N, Bian G, Xu S-Y, Sankar R, Neupane M, Liu Ch, Belopolski I, Qu D-X, Denlinger JD, Chou F-C, Hasan MZ (2014) Observation of monolayer valence band spin-orbit effect and induced quantum well states in MoX2. Nat Commun 5:Article 4673 (1–8)

    Google Scholar 

  6. 6

    Jones AM, Yu H, Ghimire NJ, Wu S, Aivazian G, Ross JS, Zhao B, Yan J, Mandrus DG, Xiao D, Yao W, Xu X (2013) Optical generation of excitonic valley coherence in monolayer WSe2. Nat Nanotechnol 8:634–638

    CAS  Article  Google Scholar 

  7. 7

    Houssa M, Dimoulas A, Molle A (eds) (2016) 2D materials for nanoelectronics. CRC Press, Boca Raton

    Google Scholar 

  8. 8

    Terrones H, López-Urías F, Terrones M (2013) Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci Rep 3:Article 1549 (1–7)

    Article  Google Scholar 

  9. 9

    Gutiérrez HR, Perea-López N, Elias AL, Berkdemir A, Wang B, Lv R, López-Urias F, Crespi VH, Terrones H, Terrones M (2013) Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett 13(8):3447–3454

    Article  Google Scholar 

  10. 10

    Ye M, Zhang D, Yap YK (2017) Recent advances in electronic and optoelectronic devices based on two-dimensional transition metal dichalcogenides. Electronics 6:Article 43 (1–39)

    Google Scholar 

  11. 11

    Krivosheeva AV (2015) Possibilities of band gap engineering in two-dimensional hexagonal dichalcogenides. In: Borisenko VE, Gaponenko SV, Gurin VS (eds) Physics, chemistry and application of nanostructures. World Scientific, Singapore, pp 161–168

    Chapter  Google Scholar 

  12. 12

    Shaposhnikov VL, Krivosheeva AV, Borisenko VE (2019) Impact of defects on electronic properties of heterostructures constructed from monolayers of transition metal dichalcogenides. Phys Status Solidi B 256:Article P1800355 (1–7)

    Article  Google Scholar 

  13. 13

    Komsa HP, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov AV (2012) Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys Rev Lett 109:Article 035503 (1–5)

    Article  Google Scholar 

  14. 14

    Rasool HI, Ophus C, Zettl A (2015) Atomic defects in two dimensional materials. Adv Mater 27:5771–5777

    CAS  Article  Google Scholar 

  15. 15

    Chen Y, Huang S, Ji X, Adepalli K, Yin K, Ling X, Wang X, Xue J, Dresselhaus M, Kong J, Yildiz B (2018) Tuning electronic structure of single layer MoS2 through defect and interface engineering. ACS Nano 12:2569–2579

    CAS  Article  Google Scholar 

  16. 16

    Krivosheeva A, Shaposhnikov V, Borisenko V, Lazzari J-L, Waileong C, Gusakova J, Tay BK (2015) Theoretical study of defect impact on two-dimensional MoS2. J Semicond 36(12):Article 122002 (1–6)

    Article  Google Scholar 

  17. 17

    Krivosheeva AV, Shaposhnikov VL, Borisenko VE, Lazzari J-L, Skorodumova NV, Tay BK (2015) Band gap modifications of two-dimensional defected MoS2. Int J Nanotechnol 12(8/9):654–662

    CAS  Article  Google Scholar 

  18. 18

    Krivosheeva AV, Shaposhnikov VL, Borisenko VE, Lazzari J-L (2019) Electronic properties of WS2/WSe2 heterostructure containing Te impurity: the role of substituting position. Int J Nanosci 18(3–4):Article 1940007 (1–4)

    Google Scholar 

  19. 19

    Evarestov R, Bandura A, Porsev V, Kovalenko A (2017) Phonon spectra, electronic, and thermodynamic properties of WS2 nanotubes. J Comput Chem 38:2581–2593

    CAS  Article  Google Scholar 

  20. 20

    Kresse G, Furthmüller J (1996) Efficient interactive schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    CAS  Article  Google Scholar 

  21. 21

    Klimeš J, Bowler DR, Michaelides A (2011) Van der Waals density functionals applied to solids. Phys Rev B 83:Article 195131 (1–13)

    Article  Google Scholar 

  22. 22

    Lax M (1974) Symmetry principles in solid state and molecular physics. Wiley, London

    Google Scholar 

  23. 23

    Setyawan W, Curtarolo S (2010) High-throughput electronic band structure calculations: challenges and tools. Comput Mater Sci 49:299–312

    Article  Google Scholar 

  24. 24

    Krivosheeva AV, Kholod AN, Shaposhnikov VL, Krivosheev AE, Borisenko VE (2002) Band structure of Mg2Si and Mg2Ge semiconducting compounds with a strained crystal lattice. Semiconductors 36(5):496–500

    CAS  Article  Google Scholar 

  25. 25

    Krivosheeva AV, Shaposhnikov VL, Krivosheev AE, Filonov AB, Borisenko VE (2003) Effect of lattice deformation on semiconducting properties of CrSi2. Semiconductors 37(4):384–389

    CAS  Article  Google Scholar 

  26. 26

    Lu N, Guo H, Li L, Dai J, Wang L, Mei W-N, Wu X, Zeng XC (2014) MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field. Nanoscale 6:2879–2886

    CAS  Article  Google Scholar 

  27. 27

    Conley HJ, Wang B, Ziegler JI, Haglund RF Jr, Pantelides ST, Bolotin KI (2013) Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett 13(8):3626–3630

    CAS  Article  Google Scholar 

  28. 28

    Lu P, Wu X, Guo W, Zeng XC (2012) Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys Chem Chem Phys 14:13035–13040

    CAS  Article  Google Scholar 

  29. 29

    Yue Q, Kang J, Shao Z, Zhang X, Chang S, Wang G, Qin S, Li J (2012) Mechanical and electronic properties of monolayer MoS2 under elastic strain. Phys Lett A 376:1166–1170

    CAS  Article  Google Scholar 

  30. 30

    Shi H, Pan H, Zhang Y-W, Yakobson BI (2013) Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys Rev B 87:Article 155304 (1–8)

    Google Scholar 

Download references


The work was performed in the framework of State Scientific Program “Functional and Engineering Materials, Nanomaterials” supported by Ministry of Education of the Republic of Belarus. The authors are grateful to Goethe-Institut for financial support within the MOST project for enhancing professional contacts between Belarus and the EU.

Author information



Corresponding author

Correspondence to Anna Krivosheeva.

Ethics declarations

Conflict of interest

This manuscript has not been published and is not under consideration for publication elsewhere. The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krivosheeva, A., Shaposhnikov, V., Borisenko, V. et al. Energy band gap tuning in Te-doped WS2/WSe2 heterostructures. J Mater Sci 55, 9695–9702 (2020).

Download citation