Skip to main content

Advertisement

Log in

Nanocomposites based on graphene analogous materials and conducting polymers: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Interest in nanocomposite materials has grown rapidly over the past decade. In this time, graphene, graphene analogs, and polymers have increasingly found use as components in nanocomposite materials. Combining multiple materials at the nanoscale provides an opportunity to produce nanocomposites with unique and in many cases enhanced properties. Conductivity is one such property, which can be enhanced through the interaction of multiple materials at the nanoscale. In this review, we highlight nanocomposites derived from graphene analogous materials (MoS2, WS2, BN, MXenes) and electronically conducting polymers (polyaniline, polypyrrole, polythiophene, and derivatives). Methods of nanocomposite preparations including solution or nanodispersion mixing, melt mixing, and in situ polymerization are discussed, as well as specific applications of nanocomposite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Reproduced with permission from Ref. [44]

Figure 3

Reproduced with permission from Ref. [44]

Figure 4

Reproduced with permission from Ref. [34]

Figure 5

Reproduced with permission from Ref. [50]

Figure 6

Reproduced with permission from Ref. [51]

Figure 7

Reproduced with permission from Ref. [52]

Figure 8

Reproduced with permission from Ref. [60]

Figure 9

Reproduced with permission from Ref. [61]

Figure 10

Reproduced with permission from Ref. [62]

Figure 11

Reproduced with permission from Ref. [69]

Figure 12

Reproduced with permission from Ref. [70]

Figure 13

Reproduced with permission from Ref. [72]

Figure 14

Reproduced with permission from Ref. [74]

Figure 15

Reproduced with permission from Ref. [76]

Figure 16

Reproduced with permission from Ref. [77]

Figure 17

Reproduced with permission from Ref. [80]

Figure 18

Reproduced with permission from Ref. [80]

Figure 19

Reproduced with permission from Ref. [81]

Figure 20

Reproduced with permission from Ref. [81]

Figure 21

Reproduced with permission from Ref. [82]

Figure 22

Reproduced with permission from Ref. [82]

Figure 23

Reproduced with permission from Ref. [84]

Figure 24

Reproduced with permission from Ref. [84]

Figure 25

Reproduced with permission from Ref. [85]

Figure 26

Reproduced with permission from Ref. [86]

Figure 27

Reproduced with permission from Ref. [90]

Figure 28

Reproduced with permission from Ref. [88]

Figure 29

Reproduced with permission from Ref. [89]

Figure 30

Reproduced with permission from Ref. [89]

Figure 31

Reproduced with permission from Ref. [91]

Figure 32

Reproduced with permission from Ref. [92]

Figure 33

Reproduced with permission from Ref. [92]

Figure 34

Reproduced with permission from Ref. [92]

Figure 35

Reproduced with permission from Ref. [93]

Figure 36

Reproduced with permission from Ref. [94]

Figure 37

Reproduced with permission from Ref. [94]

Figure 38

Reproduced with permission from Ref. [98]

Figure 39

Reproduced with permission from Ref. [99]

Figure 40

Reproduced with permission from Ref. [100]

Figure 41

Reproduced with permission from Ref. [102]

Figure 42

Reproduced with permission from Ref. [106]

Figure 43

Reproduced with permission from Ref. [111]

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Salavati-Niasari M, Ghanbari D (2011) Polymeric nanocomposite materials. In: Reddy B (ed) Diverse industrial applications of nanocomposites. InTech, London, pp 501–520

    Google Scholar 

  2. Gilman JW et al (1999) Recent advances in flame retardant polymer nanocomposites. National Institute of Standards and Technology, Gaithersburg, pp 273–283

    Google Scholar 

  3. Gilman JW, Kashiwagi T, Lomakin S, Giannelis E, Manias E, Lichtenhan J, Jones P (1998) In: fire retardancy of polymers: the use of intumescence. The Royal Society of Chemistry, Cambridge, pp 203–221

    Google Scholar 

  4. Zhan G-D, Kuntz JD, Wan J, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2:38–42

    CAS  Google Scholar 

  5. Li Y-X, Gong Z-L, Yang Y (2007) Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries. J Power Sources 174:528–532

    CAS  Google Scholar 

  6. Feng Y, Burkett SL (2015) Fabrication and electrical performance of through silicon via interconnects filled with a copper/carbon nanotube composite. J Vac Sci Technol, B 33(2):022004. https://doi.org/10.1116/1.4907417

    Article  CAS  Google Scholar 

  7. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    CAS  Google Scholar 

  8. Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204

    CAS  Google Scholar 

  9. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U et al (2007) Room-temperature quantum Hall effect in graphene. Science 315:1379

    CAS  Google Scholar 

  10. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    CAS  Google Scholar 

  11. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    CAS  Google Scholar 

  12. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    CAS  Google Scholar 

  13. Xu J, Wang Y, Hu S (2017) Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors, a review. Microchim Acta 184:1–44

    CAS  Google Scholar 

  14. Wong SI, Sunarso J, Wong BT, Lin H, Yu A, Jia B (2018) Towards enhanced energy density of graphene-based supercapacitors: current status, approaches, and future directions. J Power Sources 396:182–206

    CAS  Google Scholar 

  15. Lei W, Si W, Xu Y, Gu Z, Hao Q (2014) Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181:707–722

    CAS  Google Scholar 

  16. Rahman MS, Hammed WA, Yahya RB, Mahmud HNME (2016) Prospects of conducting polymer and graphene as counter electrodes in dye-sensitized solar cells. J Polym Res 23:192. https://doi.org/10.1007/s10965-016-1090-6

    Article  CAS  Google Scholar 

  17. Bae J, Park JY, Kwon OS, Lee C-S (2017) Energy efficient capacitors based on graphene/conducting polymer hybrids. J Ind Eng Chem 51:1–11

    CAS  Google Scholar 

  18. Wang M, Xu Y-X (2016) Design and construction of three-dimensional graphene/conducting polymer for supercapacitors. Chin Chem Lett 27:1437–1444

    CAS  Google Scholar 

  19. Fei Shen F, Pankratov D, Chi Q (2017) Graphene-conducting polymer nanocomposites for enhancing electrochemical capacitive energy storage. Curr Opin Electrochem 4:133–144

    Google Scholar 

  20. Mural PKS, Sharma M, Madras G, Bose S (2015) A critical review on in situ reduction of graphene oxide during preparation of conducting polymeric nanocomposites. RSC Adv 5:32078–32087

    CAS  Google Scholar 

  21. Dhakal DR, Lamichhane P, Mishra K, Nelson TL, Vaidyanathan RK (2019) Influence of graphene reinforcement in conductive polymer: synthesis and characterization. Polym Adv Technol 30:2172–2182

    CAS  Google Scholar 

  22. Mittal V (2014) Functional polymer nanocomposites with graphene: a review. Macromol Mater Eng 299:906–931

    CAS  Google Scholar 

  23. Nazar LF, Wu H, Power WP (1995) Synthesis and properties of a new (PEO)x[Na(H2O)]0.25MoO3. J Mater Chem 5:1985–1993

    CAS  Google Scholar 

  24. Beyou E, Akbar S, Chaumont P, Cassagnau P (2013) Polymer nanocomposites containing functionalised multiwalled carbon nanotubes: a particular attention to polyolefin based materials. In: Suzuki S (ed) Syntheses and applications of carbon nanotubes and their composites. InTech, London, pp 77–114

    Google Scholar 

  25. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25

    CAS  Google Scholar 

  26. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    CAS  Google Scholar 

  27. Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450

    CAS  Google Scholar 

  28. Ma G, Peng H, Mu J, Huang H, Zhou X, Lei Z (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78

    CAS  Google Scholar 

  29. Zhou K, Liu J, Zeng W, Hu Y, Gui Z (2015) In situ synthesis, morphology, and fundamental properties of polymer/MoS2 nanocomposites. Compos Sci Technol 107:120–128

    CAS  Google Scholar 

  30. Ren X, Shi C, Zhang P, Jiang Y, Liu J, Zhang Q (2012) An investigation of V2O5/polypyrrole composite cathode materials for lithium-ion batteries synthesized by sol–gel. Mater Sci Eng, B 177:929–934

    CAS  Google Scholar 

  31. Xu Y, Hong W, Bai H, Li C, Shi G (2009) Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47:3538–3543

    CAS  Google Scholar 

  32. Liu J, Yang W, Tao L, Li D, Boyer C, Davis TP (2010) Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization. J Polym Sci: Part A 48:425–433

    CAS  Google Scholar 

  33. Liu J, Tao L, Yang W, Li D, Boyer C, Wuhrer R, Braet F, Davis TP (2010) Synthesis, characterization, and multilayer assembly of pH sensitive graphene-polymer nanocomposites. Langmuir 26(12):10068–10075

    CAS  Google Scholar 

  34. Wang J, Wu Z, Hu K, Chen X, Yin H (2015) High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor. J Alloy Compd 619:38–43

    CAS  Google Scholar 

  35. Hua H, Wang X, Wang J, Wan L, Liu F, Zheng H, Chen R, Xu C (2010) Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484:247–253

    Google Scholar 

  36. Choi EY, Han TH, Hong J, Kim JE, Lee SH, Kim HW, Kim SO (2010) Noncovalent functionalization of graphene with end-functional polymers. J Mater Chem 20:1907–1912

    CAS  Google Scholar 

  37. Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon 48:3834–3839

    Google Scholar 

  38. Wakabayashi K, Pierre C, Dikin DA, Ruoff RS, Ramanathan T, Brinson LC, Torkelson JM (2008) Polymer-graphite nanocomposites: effective dispersion and major property enhancement via solid-state shear pulverization. Macromolecules 41:1905–1908

    CAS  Google Scholar 

  39. Wu J, Tang Q, Sun H, Lin J, Ao H, Huang M, Yuang H (2008) Conducting film from graphite oxide nanoplatelets and poly(acrylic acid) by layer-by-layer self-sssembly. Langmuir 24:4800–4805

    CAS  Google Scholar 

  40. Posudievsky OY, Kozarenko OA, Dyadyun VS, Jorgensen SW, Spearot JA, Koshechko VG, Pokhodenko VD (2011) Characteristics of mechanochemically prepared host–guest hybrid nanocomposites of vanadium oxide and conducting polymers. J Power Sources 196:3331–3341

    CAS  Google Scholar 

  41. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453

    CAS  Google Scholar 

  42. Tang Q, Zhou Z (2013) Graphene-analogous low-dimensional materials. Prog Mater Sci 58:1244–1315

    CAS  Google Scholar 

  43. Yang D, Westreich P, Frindt RF (1999) Transition metal dichalcogenide/polymer nanocomposites. Nanostruct Mater 12:467–470

    Google Scholar 

  44. Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798

    CAS  Google Scholar 

  45. Jiang J-W (2015) Graphene versus MoS2: a short review. Front Phys 10:106801-1–106801-16

    Google Scholar 

  46. Johari P, Shenoy VB (2012) Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6(6):5449–5456

    CAS  Google Scholar 

  47. Kanatzidis M, Bissessur R, DeGroot DC, Schindler JL, Kannewurf CR (1993) New intercalation compounds of conjugated polymers. Encapsulation of polyaniline in MoS2. Chem Mater 5:595–596

    CAS  Google Scholar 

  48. Bissessur R, White W (2006) Novel alkyl substituted polyanilines/molybdenum disulfide nanocomposites. Mater Chem Phys 99:214–219

    CAS  Google Scholar 

  49. Divigalpitiya WMR, Frindt RF, Morrison SR (1989) Inclusion systems of organic molecules in restacked single-layer molybdenum disulfide. Science 246:369–371

    CAS  Google Scholar 

  50. Wang H, Jiang H, Hu Y, Li N, Zhao X, Li C (2017) 2D MoS2/polyaniline heterostructures with enlarged interlayer spacing for superior lithium and sodium storage. J Mater Chem A 5:5383–5389

    CAS  Google Scholar 

  51. Zhang X, Yang Y, Li Z, Wang X, Wang W, Yi Z, Qiang L, Wang Q, Hu Z-a (2019) Polyaniline-intercalated molybdenum disulfide composites for supercapacitors with high rate capability. J Phys Chem Solids 130:84–92

    CAS  Google Scholar 

  52. Zeng R, Li Z, Li L, Li Y, Huang J, Xiao Y, Yuan K, Chen Y (2019) Covalent connection of polyaniline with MoS2 nanosheets toward ultrahigh rate capability supercapacitors. ACS Sustain Chem Eng 7:11540–11549

    CAS  Google Scholar 

  53. Huang K-J, Wang L, Liu Y-J, Wang H-B, Liu Y-M, Wang L-L (2013) Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim Acta 109:587–594

    CAS  Google Scholar 

  54. Yang T, Yang R, Chen H, Nan F, Ge T, Jiao K (2015) Electrocatalytic activity of molybdenum disulfide nanosheets enhanced by self-doped polyaniline for highly sensitive and synergistic determination of adenine and guanine. ACS Appl Mater Interfaces 7:2867–2872

    CAS  Google Scholar 

  55. Yang T, Chen H, Yang R, Jiang Y, Li W, Jiao K (2015) A glassy carbon electrode modified with a nanocomposite consisting of molybdenum disulfide intercalated into self-doped polyaniline for the detection of bisphenol A. Microchim Acta 182:2623–2628

    CAS  Google Scholar 

  56. Dutta S, Chowdhury AD, Biswas S, Park EY, Agnihotri N, De A, De S (2018) Development of an effective electrochemical platform for highly sensitive DNA detection using MoS2-polyaniline nanocomposites. Biochem Eng J 140:130–139

    CAS  Google Scholar 

  57. Sadeghi M, Jahanshahia M, Javadian H (2020) Highly sensitive biosensor for detection of DNA nucleobases: enhanced electrochemical sensing based on polyaniline/single-layer MoS2 nanosheets nanocomposite modified carbon paste electrode. Microchem J 152:104315. https://doi.org/10.1016/j.microc.2019.104315

    Article  CAS  Google Scholar 

  58. Soni A, Pandey CM, Pandey MK, Sumana G (2019) Highly efficient polyaniline–MoS2 hybrid nanostructures based biosensor for cancer biomarker detection. Anal Chim Acta 1055:26–35

    CAS  Google Scholar 

  59. Saha S, Chaudhary N, Mittal H, Gupta G, Khanuja M (2019) Inorganic–organic nanohybrid of MoS2–PANI for advanced photocatalytic application. Int Nano Lett 9:127–139

    CAS  Google Scholar 

  60. Ren L, Zhang G, Lei J, Hu D, Dou S, Gu H, Li H, Zhang X (2019) Growth of PANI thin layer on MoS2 nanosheet with high electrocapacitive property for symmetric supercapacitor. J Alloy Compd 798:227–234

    CAS  Google Scholar 

  61. Lyle ES, McAllister C, Dahn DC, Bissessur R (2019) Exfoliated MoS2–polyaniline nanocomposites: synthesis and characterization. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-019-01327-5

    Article  Google Scholar 

  62. Wang L, Schindler J, Thomas JA, Kannewurf CR, Kanatzidis MG (1995) Entrapment of polypyrrole chains between MoS2 layers via an in situ oxidative polymerization encapsulation reaction. Chem Mater 7:1753–1755

    CAS  Google Scholar 

  63. Bissessur R, Liu PKY (2006) Direct insertion of polypyrrole into molybdenum disulfide. Solid State Ion 177:191–196

    CAS  Google Scholar 

  64. Lian M, Wu X, Wang Q, Zhang W, Wang Y (2017) Hydrothermal synthesis of polypyrrole/MoS2 intercalation composites for supercapacitor electrodes. Ceram Int 43:9877–9883

    CAS  Google Scholar 

  65. Acharya U, Bober P, Trchovà M, Alexander Zhigunov A, Stejskal J, Pfleger J (2018) Synergistic conductivity increase in polypyrrole/molybdenum disulfide composite. Polymer 150:130–137

    CAS  Google Scholar 

  66. Asan A, Asan A, Çelikkan H (2019) The effect of 2D-MoS2 doped polypyrrole coatings on brass corrosion. J Mol Struct. https://doi.org/10.1016/j.molstruc.2019.127318

    Article  Google Scholar 

  67. Hong J, Bissessur R, Dahn DC (2016) Exfoliated polypyrrole–MoS2 nanocomposites: preparation and characterization. In: McBride J (ed) Molybdenum disulfide: synthesis, properties and industrial applications. Nova Science, Hauppauge, pp 83–106

    Google Scholar 

  68. Lin B-Z, Ding C, Xu B-H, Chen Z-J, Chen Y-L (2009) Preparation and characterization of polythiophene/molybdenum disulfide intercalation material. Mater Res Bull 44:719–723

    CAS  Google Scholar 

  69. Türkaslan BE, Dikmen S, Öksüz L, Öksüz AU (2015) Plasma nanocoating of thiophene onto MoS2 nanotubes. Appl Surf Sci 357:1558–1564

    Google Scholar 

  70. Murugan AV, Quintin M, Marie-Helene Delville M-H, Campet G, Gopinath CS, Vijayamohanan K (2006) Exfoliation-induced nanoribbon formation of poly(3,4-ethylenedioxythiophene) PEDOT between MoS2 layers as cathode material for lithium batteries. J Power Sources 156:615–619

    CAS  Google Scholar 

  71. Braga D, Lezama IG, Berger H, Morpurgo AF (2012) Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett 12:5218–5223

    CAS  Google Scholar 

  72. Xu B-H, Lin B-Z, Chen Z-J, Li X-L, Qin-Qin Wang Q-Q (2009) Preparation and electrical conductivity of polypyrrole/WS2 layered nanocomposites. J Colloid Interface Sci 330:220–226

    CAS  Google Scholar 

  73. Lane BCS, Bissessur R, Abd-El-Aziz AS, Alsaedi WH, Dahn DC, McDermott E, Martin A (2016) Exfoliated nanocomposites based on polyaniline and tungsten disulfide. In: Yilmaz F (ed) Conductive polymers. InTech, London, pp 201–222

    Google Scholar 

  74. Stejskal J, Acharya U, Bober P, Hajná M, Miroslava Trchová M, Mičušík M, Omastovác M, Paštid I, Nemanja Gavrilov N (2019) Surface modification of tungsten disulfide with polypyrrole for enhancement of the conductivity and its impact on hydrogen evolution reaction. Appl Surf Sci 492:497–503

    CAS  Google Scholar 

  75. Arsenault N, Bissessur R, Dahn DC (2019) Tungsten disulfide polythiophene nanocomposites. In: Aliofkhazraei M (ed) Advances in nanostructured composites, vol 2. CRC Press, Boca Raton, pp 53–68

    Google Scholar 

  76. Luccio TD, Borriello C, Bruno A, Maglione MG, Minarini C, Nenna G (2013) Preparation and characterization of novel nanocomposites of WS2 nanotubes and polyfluorene conductive polymer. Phys Status Solidi A 210(11):2278–2283

    Google Scholar 

  77. Lin Y, Connell JW (2012) Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4:6908–6939

    CAS  Google Scholar 

  78. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993

    CAS  Google Scholar 

  79. Blase X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28(5):335–340

    CAS  Google Scholar 

  80. Zhi C, Bando Y, Tang C, Honda S, Sato K, Kuwahara H, Golberg D (2005) Characteristics of boron nitride nanotube–polyaniline composites. Angew Chem Int Ed 44:7929–7932

    CAS  Google Scholar 

  81. Zhi C, Zhang L, Bando Y, Terao T, Tang C, Kuwahara H, Golberg D (2008) New crystalline phase induced by boron nitride nanotubes in polyaniline. J Phys Chem C 112:17592–17595

    CAS  Google Scholar 

  82. Wu J, Yin L (2011) Platinum nanoparticle modified polyaniline-functionalized boron nitride nanotubes for amperometric glucose enzyme biosensor. ACS Appl Mater Interfaces 3:4354–4362

    CAS  Google Scholar 

  83. Çakmakçı E, Madakbaş S (2013) Preparation and characterization of polyaniline/hexagonal boron nitride composites. High Temp Mater Proc 32(6):557–561

    Google Scholar 

  84. Ahmad S, Sultan A, Raza W, Muneer M, Mohammad F (2016) Boron nitride based polyaniline nanocomposite: preparation, property, and application. J Appl Polym Sci. https://doi.org/10.1002/APP.43989

    Article  Google Scholar 

  85. Shahabuddin S, Khanam R, Khalid M, Sarih NM, Ching JJ, Mohamad S, Saidur R (2018) Synthesis of 2D boron nitride doped polyaniline hybrid nanocomposites for photocatalytic degradation of carcinogenic dyes from aqueous solution. Arabian Journal of Chemistry 11:1000–1016

    CAS  Google Scholar 

  86. Zhi Y-R, Yu B, Yuen ACY, Liang J, Wang L-Q, Yang W, Lu H-D, Yeoh G-H (2018) Surface manipulation of thermal-exfoliated hexagonal boron nitride with polyaniline for improving thermal stability and fire safety performance of polymeric material. ACS Omega 3:14942–14952

    CAS  Google Scholar 

  87. Maity CK, Hatui G, Sahoo S, Saren P, Nayak GC (2019) Boron nitride based ternary nanocomposites with different carbonaceous materials decorated by polyaniline for supercapacitor application. ChemistrySelect 4:3672–3680

    CAS  Google Scholar 

  88. Cui M, Ren S, Qin S, Xue Q, Zhao H, Wang L (2018) Processable poly(2 butylaniline)/hexagonal boron nitride nanohybrids for synergetic anticorrosive reinforcement of epoxy coating. Corros Sci 131:187–198

    CAS  Google Scholar 

  89. Madakbaş S, Sen F, Kahraman MV (2014) Preparation, characterization, thermal, and dielectric properties of polypyrrole/h-BN nanocomposites. Adv Polym Technol. https://doi.org/10.1002/adv.21438

    Article  Google Scholar 

  90. Sultan A, Ahmad S, Anwer T, Mohammad F (2015) Binary doped polypyrrole and polypyrrole/boron nitride nanocomposites: preparation, characterization and application in detection of liquefied petroleum gas leaks. RSC Adv 5:105980–105991

    CAS  Google Scholar 

  91. Sultan A, Mohammad F (2017) Chemical sensing, thermal stability, electrochemistry and electrical conductivity of silver nanoparticles decorated and polypyrrole enwrapped boron nitride nanocomposite. Polymer 113:221–232

    CAS  Google Scholar 

  92. Velayudham S, Lee CH, Xie M, Blair D, Bauman N, Yap YK, Sarah A, Green SA, Liu H (2010) Noncovalent functionalization of boron nitride nanotubes with poly(p-phenylene ethynylene)s and polythiophene. ACS Appl Mater Inter Interfaces 2(1):104–110

    CAS  Google Scholar 

  93. Martinez-Rubi Y, Jakubek ZJ, Jakubinek MB, Kim KS, Fuyong Cheng F, Couillard M, Kingston C, Simard B (2015) Self-assembly and visualization of poly(3-hexyl-thiophene) chain alignment along boron nitride nanotubes. J Phys Chem C 119:26605–26610

    CAS  Google Scholar 

  94. Petrelli C, Goos A, Ruhlandt-Senge K, Spencer JT (2016) Functionalization of boron nitride nanosheets (BNNSs) by organic polymers: formation of substituted polythiophene–BNNS structures. J Mater Sci 51:4952–4962. https://doi.org/10.1007/s10853-016-9800-3

    Article  CAS  Google Scholar 

  95. Giambrone N, McCrory M, Kumar A, Ram MK (2016) Comparative photoelectrochemical studies of regioregular polyhexylthiophene with microdiamond, nanodiamond and hexagonal boron nitride hybrid films. Thin Solid Films 615:216–232

    Google Scholar 

  96. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253

    CAS  Google Scholar 

  97. Verger L, Xu C, Natu V, Cheng H-M, Ren W, Barsoum MW (2019) Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr Opin Solid State Mater Sci 23:149–163

    CAS  Google Scholar 

  98. Lu X, Zhu J, Wu W, Zhang B (2017) Hierarchical architecture of PANI@TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance. Electrochim Acta 228:282–289

    CAS  Google Scholar 

  99. Ren Y, Zhu J, Wang L, Liu H, Liu Y, Wu W, Wang F (2018) Synthesis of polyaniline nanoparticles deposited on two-dimensional titanium carbide for high-performance supercapacitors. Mater Lett 214:84–87

    CAS  Google Scholar 

  100. Fu J, Yun J, Wu S, Li L, Yu L, Kim KH (2018) Architecturally robust graphene-encapsulated MXeneTi2CTx@polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl Mater Interfaces 10:34212–34221

    CAS  Google Scholar 

  101. Parveen N, Mahato N, Ansari MO, Cho MH (2016) Enhanced electrochemical behavior and hydrophobicity of crystalline polyaniline@graphene nanocomposite synthesized at elevated. Temp Compos Part B 87:281–290

    CAS  Google Scholar 

  102. Zhang Y, Wang L, Zhang J, Song P, Xiao Z, Liang C, Qiu H, Kong K, Gu J (2019) Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films. Compos Sci Technol 183:107833. https://doi.org/10.1016/j.compscitech.2019.107833

    Article  CAS  Google Scholar 

  103. Kumar S, Artia KP, Singh N, Verma V (2019) Steady microwave absorption behavior of two-dimensional metal carbide MXene and polyaniline composite in X-band. J Magn Magn Mater 488:165364. https://doi.org/10.1016/j.jmmm.2019.165364

    Article  CAS  Google Scholar 

  104. Wei H, Dong J, Fang X, Zheng W, Sun Y, Qian Y, Jiang Z, Huang Y (2019) Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption. Compos Sci Technol 169:52–59

    CAS  Google Scholar 

  105. Zhao L, Wang K, Wei W, Wang L, Han W (2019) High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat 1:407–416

    Google Scholar 

  106. Wu W, Niu D, Zhu J, Gao Y, Wei D, Liu X, Wang F, Wang L, Yang L (2019) Organ-likeTi3C2 Mxenes/polyaniline composites by chemical grafting as high-performance supercapacitors. J Electroanal Chem 847:113203. https://doi.org/10.1016/j.jelechem.2019.113203

    Article  CAS  Google Scholar 

  107. Boota M, Anasori B, Voigt C, Zhao M-Q, Barsoum MW, Gogotsi Y (2016) Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the Layers of 2D titanium carbide (MXene). Adv Mater 28:1517–1522

    CAS  Google Scholar 

  108. Zhu M, Huang Y, Deng Q, Zhou J, Pei Z, Xue Q, Huang Y, Wang Z, Li H, Huang Q, Zhi C (2016) Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv Energy Mater 6:1600969. https://doi.org/10.1002/aenm.201600969

    Article  CAS  Google Scholar 

  109. Yan J, Ma Y, Zhang C, Li X, Liu W, Yao X, Yao S, Luo S (2018) Polypyrrole-MXene coated textile-based flexible energy storage. RSC Adv 8:39742–39748

    CAS  Google Scholar 

  110. Wu W, Wei D, Zhun J, Niu D, Wang F, Wang L, Yang L, Yang P, Wang C (2019) Enhanced electrochemical performances of organ-like Ti3C2 MXenes/polypyrrole composites as supercapacitors electrode materials. Ceram Int 45:7328–7337

    CAS  Google Scholar 

  111. Zhang C, Xu S, Cai D, Cao J, Wang L, Han W (2020) Planar supercapacitor with high areal capacitance based on Ti3C2/polypyrrole composite film. Electrochim Acta 330:135277. https://doi.org/10.1016/j.electacta.2019.135277

    Article  CAS  Google Scholar 

  112. Hun X, Li Y, Wang S, Li Y, Zhao J, Zhang H, Luo X (2018) Photoelectrochemical platform for cancer cell glutathione detection based on polyaniline and nanoMoS2 composites modified gold electrode. Biosens Bioelectron 112:93–99

    Google Scholar 

  113. Cheng L, Liu J, Gu X, Gong H, Shi X, Liu T, Wang C, Wang X, Liu G, Xing H, Bu W, Sun B, Zhuang Liu Z (2014) PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv Mater 26:1886–1893

    CAS  Google Scholar 

  114. Meng X, Liu Z, Cao Y, Dai W, Zhang K, Dong H, Feng X, Zhang X (2017) Fabricating aptamer-conjugated PEGylated-MoS2/Cu1.8S theranostic nanoplatform for multiplexed imaging diagnosis and chemo-photothermal therapy of cancer. Adv Funct Mater 27:1605592. https://doi.org/10.1002/adfm.201605592

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabin Bissessur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunlop, M.J., Bissessur, R. Nanocomposites based on graphene analogous materials and conducting polymers: a review. J Mater Sci 55, 6721–6753 (2020). https://doi.org/10.1007/s10853-020-04479-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04479-9