Skip to main content
Log in

Mn0.3Cd0.7S nanorods modified with NiS clusters as photocatalysts for the H2 evolution reaction

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The intimate contact of co-catalyst and host photocatalyst benefits the separation and transfer of carriers in time, hindering the recombination of e and h+ during the photocatalytic process. Herein, a facile one-pot solvothermal methodology was applied to fabricate NiS clusters-modified Mn0.3Cd0.7S p–n heterojunction photocatalyst. Compared with NiS@Mn0.3Cd0.7S synthesized by the two-step approach, the symbiosis of NiS and Mn0.3Cd0.7S during one-pot synthesis induced the highly dispersed NiS clusters on the surface of Mn0.3Cd0.7S nanorods and the stronger intimate contact between NiS and Mn0.3Cd0.7S, giving rise to better H2 production of 65.81 mmol g−1 h−1. The apparent quantum yield reached 20.19%. The study presented a feasible route for the synthesis of cheap and efficient p–n heterostructure photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Moniz SJA, Shevlin SA, Martin DJ, Guo ZX, Tang JW (2015) Visible-light driven heterojunction photocatalysts for water splitting—a critical review. Energ Environ Sci 8(3):731–759

    CAS  Google Scholar 

  2. Tahir MB, Riaz KN, Asiri AM (2019) Boosting the performance of visible light-driven WO3/g-C3N4 anchored with BiVO4 nanoparticles for photocatalytic hydrogen evolution. Int J Energ Res 43:5747–5758

    Google Scholar 

  3. Mahanthappa M, Kottam N, Yellappa S (2019) Enhanced photocatalytic degradation of methylene blue dye using CuS–CdS nanocomposite under visible light irradiation. Appl Surf Sci 475:828–838

    CAS  Google Scholar 

  4. Su T, Xiao LF, Gao Y, Liu T, Peng XN, Yuan H, Han YB, Ji SH, Wang XN (2019) Multifunctional MoS2 ultrathin nanoflakes loaded by Cd0.5Zn0.5S QDs for enhanced photocatalytic H2 production. Int J Energ Res 43(11):5678–5686

    CAS  Google Scholar 

  5. Ikeue K, Shiiba S, Machida M (2010) Novel visible-light-driven photocatalyst based on Mn–Cd–S for efficient H2 evolution. Chem Mater 22:743–745

    CAS  Google Scholar 

  6. Li H, Wang ZQ, He YH, Meng SG, Xu Y, Chen SF, Fu XL (2018) Rational synthesis of MnxCd1−xS for enhanced photocatalytic H2 evolution: effects of S precursors and the feed ratio of Mn/Cd on its structure and performance. J Colloid Interf Sci 535:469–480

    Google Scholar 

  7. Ikeue K, Shiiba S, Machida M (2012) Ag-doped Mn–Cd sulfide as a visible-light-driven photocatalyst for H2 evolution. Appl Catal B Environ 23:123–124

    Google Scholar 

  8. Ikeue K, Shiiba S, Machida M (2011) Hydrothermal synthesis of a doped Mn–Cd–S solid solution as a visible-light-driven photocatalyst for H2 evolution. Chemsuschem 4(2):269–273

    CAS  Google Scholar 

  9. Liu H, Xu ZZ, Zhang Z, Ao D (2016) Novel visible-light driven Mn0.8Cd0.2S/g-C3N4 composites: preparation and efficient photocatalytic hydrogen production from water without noble metals. Appl Catal A Gen 518:150–157

    CAS  Google Scholar 

  10. Wang JM, Luo J, Liu D, Chen ST, Peng TY (2019) One-pot solvothermal synthesis of MoS2-modified Mn0.2Cd0.8S/MnS heterojunction photocatalysts for highly efficient visible-light-driven H2 production. Appl Catal B Environ 241:130–140

    CAS  Google Scholar 

  11. Huang QZ, Xiong Y, Zhang Q, Yao HC, Li ZJ (2017) Noble metal-free MoS2 modified Mn0.25Cd0.75S for highly efficient visible-light driven photocatalytic H2 evolution. Appl Catal B Environ 209:514–522

    CAS  Google Scholar 

  12. Huang QZ, Tao ZJ, Ye LQ, Yao HC, Li ZJ (2018) Mn0.2Cd0.8S nanowires modified by CoP3 nanoparticles for highly efficient photocatalytic H2 evolution under visible light irradiation. Appl Catal B Environ 237:689–698

    CAS  Google Scholar 

  13. An CH, Feng J, Liu JX, Wei GJ, Du J, Wang H, Jin SY, Zhang J (2017) NiS nanoparticle decorated MoS2 nanosheets as efficient promoters for enhanced solar H2 evolution over ZnxCd1−xS nanorods. Inorg Chem Front 4(6):1042–1047

    CAS  Google Scholar 

  14. Ran JR, Zhang J, Yu JG, Qiao SZ (2014) Enhanced visible-light photocatalytic H2 production by ZnxCd1−xS modified with earth-abundant nickel-based cocatalysts. Chemsuschem 7(12):3426–3434

    CAS  Google Scholar 

  15. Wang YB, Wang YS, Xu R (2013) Photochemical deposition of Pt on CdS for H2 evolution from water: markedly enhanced activity by controlling Pt reduction environment. J Phys Chem C 117(2):783–790

    CAS  Google Scholar 

  16. Wen JQ, Xie J, Yang ZH, Shen RC, Li HY, Luo XY, Chen XB, Li X (2017) Fabricating the robust g-C3N4 nanosheets/carbons/NiS multiple heterojunctions for enhanced photocatalytic H2 generation: an insight into the trifunctional roles of nanocarbons. ACS Sustain Chem Eng 5(3):2224–2236

    CAS  Google Scholar 

  17. Zhang J, Qi LF, Ran JR, Yu JG, Qiao SZ (2014) Ternary NiS/ZnxCd1−xS/reduced graphene oxide nanocomposites for enhanced solar photocatalytic H2-production activity. Adv Energy Mater 4(10):1301925

    Google Scholar 

  18. Derikvandi H, Nezamzadeh-Ejhieh A (2017) Designing of experiments for evaluating the interactions of influencing factors on the photocatalytic activity of NiS and SnS2: focus on coupling, supporting and nanoparticles. J Colloid Interf Sci 490:628–641

    CAS  Google Scholar 

  19. Zhang J, Qiao SZ, Qi LF, Yu JG (2013) Fabrication of NiS modified CdS nanorod p–n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Phys Chem Chem Phys 15(29):12088–12094

    CAS  Google Scholar 

  20. Liu XL, Liang XZ, Wang P, Huang BB, Qin XY, Zhang XY, Dai Y (2017) Highly efficient and noble metal-free NiS modified MnxCd1−xS solid solutions with enhanced photocatalytic activity for hydrogen evolution under visible light irradiation. Appl Catal B Environ 203:282–288

    CAS  Google Scholar 

  21. Zhang W, Wang YB, Wang Z, Zhong ZY, Xu R (2010) Highly efficient and noble metal-free NiS/CdS photocatalysts for H2 evolution from lactic acid sacrificial solution under visible light. Chem Commun 46(40):7631–7633

    CAS  Google Scholar 

  22. Yuan JL, Wen JQ, Zhong YM, Li X, Fang YP, Zhang SS, Liu W (2015) Enhanced photocatalytic H2 evolution over noble-metal-free NiS cocatalyst modified CdS nanorods/g–C3N4 heterojunctions. J Mater Chem A 3:18244–18255

    CAS  Google Scholar 

  23. Guan SD, Fu XL, Zhang Y, Peng ZJ (2018) β-NiS modified CdS nanowires for photocatalytic H2 evolution with exceptionally high efficiency. Chem Sci 9:1574–1585

    CAS  Google Scholar 

  24. Han YL, Dong XF, Liang ZB (2019) Synthesis of MnxCd1−xS nanorods and modification with CuS for extraordinarily superior photocatalytic H2 production. Catal Sci Technol 9(6):1427–1436

    CAS  Google Scholar 

  25. Liu YM, Gong ZY, Xie YD, Lv H, Zhang B (2019) Revealing the synergetic effects of graphene and MoS2 on boosted photocatalytic H2 production of Mn0.5Cd0.5S photocatalyst. Appl Surf Sci 505:144637

    Google Scholar 

  26. Hu Y, Hao XQ, Cui ZW, Zhou J, Chu SQ, Wang Y, Zou ZG (2020) Enhanced photocarrier separation in conjugated polymer engineered CdS for direct Z-scheme photocatalytic hydrogen evolution. Appl Catal B Environ 260:118131

    CAS  Google Scholar 

  27. Chen JS, Xin F, Qin SY, Yin XH (2013) Photocatalytically reducing CO2 to methyl formate in methanol over ZnS and Ni-doped ZnS photocatalysts. Chem Eng J 230:506–512

    CAS  Google Scholar 

  28. Jing D, Liu M, Guo L (2010) Enhanced hydrogen production from water over Ni doped ZnIn2S4 microsphere photocatalysts. Catal Lett 140(3–4):167–171

    CAS  Google Scholar 

  29. He K, Xie J, Liu ZQ, Chen XB, Hu J, Li X (2018) Multi-functional Ni3C cocatalyst/g–C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light. J Mater Chem A 6:13110–13122

    CAS  Google Scholar 

  30. Li ZJ, Wang XM, Wang XH, Lin YS, Meng AL, Yang LN, Li QD (2019) Mn–Cd–S@amorphous–Ni3S2 hybrid catalyst with enhanced photocatalytic property for hydrogen production and eletrocatalytic OER. Appl Surf Sci 491:799–806

    CAS  Google Scholar 

  31. Molla A, Sahu M, Hussain S (2016) Synthesis of tunable band gap semiconductor nickel sulphide nanoparticles: Rapid and round the clock degradation of organic dyes. Sci Rep 6:26034

    CAS  Google Scholar 

  32. Shen SH, Chen J, Wang XX, Zhao L, Guo LJ (2011) Microwave-assisted hydrothermal synthesis of transition-metal doped ZnIn2S4 and its photocatalytic activity for hydrogen evolution under visible light. J Power Sources 196(23):10112–10119

    CAS  Google Scholar 

  33. Peng SQ, An R, Li YX, Lu GX, Li SB (2012) Remarkable enhancement of photocatalytic hydrogen evolution over Cd0.5Zn0.5S by bismuth-doping. Int J Hydrog Energ 37(2):1366–1374

    CAS  Google Scholar 

  34. Sun T, Fan J, Liu EZ, Liu LS, Wang Y, Dai HZ, Yang YH, Hou WQ, Hu XY, Jiang ZY (2012) Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: application in hydrogen evolution by water splitting under visible light irradiation. Powder Technol 228:210–218

    CAS  Google Scholar 

  35. Lee GJ, Anandan S, Masten SJ, Wu JJ (2016) Photocatalytic hydrogen evolution from water splitting using Cu doped ZnS microspheres under visible light irradiation. Renew Energ 89:18–26

    CAS  Google Scholar 

  36. Datta A, Panda SK, Chaudhuri S (2008) Phase transformation and optical properties of Cu-doped ZnS nanorods. J Solid State Chem 181(9):2332–2337

    CAS  Google Scholar 

  37. Wang YB, Wu JC, Zheng JW, Jiang R, Xu R (2012) Ni2+-doped ZnxCd1−xS photocatalysts from single-source precursors for efficient solar hydrogen production under visible light irradiation. Catal Sci Technol 2(3):581–588

    CAS  Google Scholar 

  38. Qin ZX, Xue F, Chen YB, Shen SH, Guo LJ (2017) Spatial charge separation of one-dimensional Ni2P–Cd0.9Zn0.1S/g-C3N4 heterostructure for high-quantum-yield photocatalytic hydrogen production. Appl Catal B Environ 217:551–559

    CAS  Google Scholar 

  39. Manikandan A, Hema E, Durka M, Amutha Selvi M, Alagesan T, Arul Antony S (2015) Mn2+ doped NiS (MnxNi1−xS: x = 0.0, 0.3 and 0.5) nanocrystals: structural, morphological, opto-magnetic and photocatalytic properties. J Inorg Organomet Polym 25(4):804–815

    CAS  Google Scholar 

  40. Yu JG, Wang GH, Cheng B, Zhou MH (2007) Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Appl Catal B Environ 69(3–4):171–180

    CAS  Google Scholar 

  41. Shi ZS, Dong XF, Dang HF (2016) Facile fabrication of novel red phosphorus-CdS composite photocatalysts for H2 evolution under visible light irradiation. Int J Hydrog Energ 14:5908–5915

    Google Scholar 

  42. Aoki A (1976) X-ray photoelectron spectroscopic studies on ZnS:MnF2 phosphors. Jpn J Appl Phys 15(2):305–311

    CAS  Google Scholar 

  43. Wang CX, Lin HH, Xu ZZ, Cheng H, Zhang C (2015) One-step hydrothermal synthesis of flowerlike MoS2/CdS heterostructures for enhanced visible-light photocatalytic activities. RSC Adv 5(20):15621–15626

    CAS  Google Scholar 

  44. Wei RB, Huang ZL, Gu GH, Wang Z, Zeng LX, Chen YB, Liu ZQ (2018) Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Appl Catal B Environ 231:101–107

    CAS  Google Scholar 

  45. Han YL, Liang ZB, Dang HF, Dong XF (2018) Extremely high photocatalytic H2 evolution of novel Co3O4/Cd0.9Zn 0.1S p–n heterojunction photocatalyst under visible light irradiation. J Taiwan Inst Chem E 87:196–203

    CAS  Google Scholar 

  46. Hong JD, Wang YS, Wang YB, Zhang W, Xu R (2013) Noble-metal-free NiS/C3N4 for efficient photocatalytic hydrogen evolution from water. Chemsuschem 6(12):2263–2268

    CAS  Google Scholar 

  47. Chen Y, Guo L (2012) Highly efficient visible-light-driven photocatalytic hydrogen production from water using Cd0.5Zn0.5S/TNTs (titanate nanotubes) nanocomposites without noble metals. J Mater Chem 22(15):7507–7514

    CAS  Google Scholar 

  48. Huang QZ, Wang JC, Ye LQ, Zhang Q, Yao HC, Li ZJ (2017) A novel p–n heterojunction Mn0.25Cd0.75S/Co3O4 for highly efficient photocatalytic H2 evolution under visible light irradiation. J Taiwan Inst Chem E 80:570–577

    CAS  Google Scholar 

  49. Niu F, Chen D, Qin LS, Zhang N, Wang JY, Chen Z, Huang YX (2015) Facile synthesis of highly efficient p–n heterojunction CuO/BiFeO3 composite photocatalysts with enhanced visible-light photocatalytic activity. ChemCatChem 7:3279–3289

    CAS  Google Scholar 

  50. Li YH, Xing J, Yang XH, Yang HG (2014) Cluster size effects of platinum oxide as active sites in hydrogen evolution reactions. Chem Eur J 20(39):12377–12380

    CAS  Google Scholar 

  51. Xiang QJ, Yu JG, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134(15):6575–6578

    CAS  Google Scholar 

  52. Lee JH, Kim SI, Park SM, Kang M (2017) A p–n heterojunction NiS-sensitized TiO2 photocatalytic system for efficient photoreduction of carbon dioxide to methane. Ceram Int 43(2):1768–1774

    CAS  Google Scholar 

  53. Meng FK, Li JT, Cushing SK, Zhi MJ, Wu NQ (2013) Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J Am Chem Soc 135(28):10286–10289

    CAS  Google Scholar 

  54. Han B, Liu SQ, Xu YJ, Tang ZR (2015) 1D CdS nanowire-2D BiVO4 nanosheet heterostructures toward photocatalytic selective fine-chemical synthesis. RSC Adv 5(21):16476–16483

    CAS  Google Scholar 

  55. Majhi D, Das K, Mishra A, Dhiman R, Mishra BG (2020) One pot synthesis of CdS/BiOBr/Bi2O2CO3: a novel ternary double Z-scheme heterostructure photocatalyst for efficient degradation of atrazine. Appl Catal B Environ 260:118222

    CAS  Google Scholar 

  56. Yue XZ, Yi SS, Wang RW, Zhang ZT, Qiu SL (2016) A novel and highly efficient earth-abundant Cu3P with TiO2 “P–N” heterojunction nanophotocatalyst for hydrogen evolution from water. Nanoscale 8(40):17516–17523

    CAS  Google Scholar 

  57. Ma S, Deng YP, Xie J, He KL, Liu W, Chen XB, Li X (2018) Noble-metal-free Ni3C cocatalysts decorated CdS nanosheets for high-efficiency visible-light-driven photocatalytic H2 evolution. Appl Catal B Environ 227:218–228

    CAS  Google Scholar 

  58. Yu JG, Yang B, Cheng B (2012) Noble-metal-free carbon nanotube–Cd0.1Zn0.9S composites for high visible–light photocatalytic H2-production performance. Nanoscale 4(8):2670–2677

    CAS  Google Scholar 

  59. Chen XB, Shen SH, Guo LJ, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    CAS  Google Scholar 

  60. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    CAS  Google Scholar 

  61. Liao LB, Zhang QH, Su ZH, Zhao ZZ, Wang YN, Li Y, Lu XX, Wei DG, Feng GY, Yu QK, Cai XJ, Zhao JM, Ren ZF, Fang H, Robles-Hernandez F, Baldelli S, Bao JM (2014) Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat Nanotechnol 9(1):69–73

    CAS  Google Scholar 

  62. Guo F, Shi WL, Wang HB, Han MM, Li H, Huang H, Liu Y, Kang ZH (2017) Facile fabrication of a CoO/g–C3N4 p–n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. Catal Sci Technol 7(15):3325–3331

    CAS  Google Scholar 

  63. Kim HG, Borse PH, Choi W, Lee JS (2005) Photocatalytic nanodiodes for visible–light photocatalysis. Angew Chem Int Ed 44(29):4585–4589

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (No. 21978098) support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinfa Dong.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 572 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Zhang, Q., Liang, Z. et al. Mn0.3Cd0.7S nanorods modified with NiS clusters as photocatalysts for the H2 evolution reaction. J Mater Sci 55, 5390–5401 (2020). https://doi.org/10.1007/s10853-020-04405-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04405-z

Navigation