Skip to main content

Advertisement

Log in

Covalent hybrid materials between polyoxometalates and organic molecules for enhanced electrochemical properties

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The organic functionalization of polyoxometalate (POM) clusters has exhibited increasing superiority for the rational excavation and design of advanced POM-based materials. The architectures of such inorganic–organic hybrids are just like “molecular Lego” toys by virtue of the intermolecular and/or intramolecular interactions. Although numerous novel hybrids have been reported by pioneers, the relationship between organic segments and supramolecular architectures is still ambiguous. In this paper, we focus on the influence from organic bridging ligand to the structural orientation of POM hybrid materials by X-ray diffraction, molecular simulation, and energy calculation. The results indicate that rigid organic bridging ligand possesses a much stronger tendency to form intermolecular interactions than flexible ligand and can improve the electrochemical performance for hydrogen evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Liu T, Diemann E, Li H, Dress AWM, Müller A (2003) Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles. Nature 426(6962):59–62. https://doi.org/10.1038/nature02036

    Article  CAS  Google Scholar 

  2. Chen L, Chen W-L, Wang X-L, Li Y-G, Su Z-M, Wang E-B (2019) Polyoxometalates in dye-sensitized solar cells. Chem Soc Rev 48(1):260–284. https://doi.org/10.1039/c8cs00559a

    Article  CAS  Google Scholar 

  3. Fang W-H, Zhang L, Zhang J (2018) Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem Soc Rev 47(2):404–421. https://doi.org/10.1039/c7cs00511c

    Article  CAS  Google Scholar 

  4. Bhagwan J, Khaja Hussain S, Yu JS (2020) Aqueous asymmetric supercapacitors based on ZnCo2O4 nanoparticles via facile combustion method. J Alloy Compd 815:152456. https://doi.org/10.1016/j.jallcom.2019.152456

    Article  CAS  Google Scholar 

  5. Duros V, Grizou J, Xuan W, Hosni Z, Long D-L, Miras HN, Cronin L (2017) Human versus robots in the discovery and crystallization of gigantic polyoxometalates. Angewandte Chemie-Int Ed 56(36):10815–10820. https://doi.org/10.1002/anie.201705721

    Article  CAS  Google Scholar 

  6. Xuan W, Pow R, Long D-L, Cronin L (2017) Exploring the molecular growth of two gigantic half-closed polyoxometalate clusters Mo180 and {Mo130Ce6}. Angewandte Chemie-Int Ed 56(33):9727–9731. https://doi.org/10.1002/anie.201702957

    Article  CAS  Google Scholar 

  7. Xuan W, Pow R, Watfa N, Zheng Q, Surman AJ, Long D-L, Cronin L (2019) Stereoselective assembly of gigantic chiral molybdenum blue wheels using lanthanide ions and amino acids. J Am Chem Soc 141(3):1242–1250. https://doi.org/10.1021/jacs.8b09750

    Article  CAS  Google Scholar 

  8. Mitchell SG, Streb C, Miras HN, Boyd T, Long DL, Cronin L (2010) Face-directed self-assembly of an electronically active Archimedean polyoxometalate architecture. Nat Chem 2(4):308–312. https://doi.org/10.1038/nchem.581

    Article  CAS  Google Scholar 

  9. Ishiba K, Noguchi T, Iguchi H, Morikawa M-a, Kaneko K, Kimizuka N (2017) photoresponsive nanosheets of polyoxometalates formed by controlled self-assembly pathways. Angewandte Chemie-Int Ed 56(11):2974–2978. https://doi.org/10.1002/anie.201612473

    Article  CAS  Google Scholar 

  10. Wang Y-R, Huang Q, He C-T, Chen Y, Liu J, Shen F-C, Lan Y-Q (2018) Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat Commun. https://doi.org/10.1038/s41467-018-06938-z

    Article  Google Scholar 

  11. Tian J, Xu Z-Y, Zhang D-W, Wang H, Xie S-H, Xu D-W, Ren Y-H, Wang H, Liu Y, Li Z-T (2016) Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production. Nat Commun. https://doi.org/10.1038/ncomms11580

    Article  Google Scholar 

  12. Chen L, Luque R, Li Y (2017) Controllable design of tunable nanostructures inside metal-organic frameworks. Chem Soc Rev 46(15):4614–4630. https://doi.org/10.1039/c6cs00537c

    Article  CAS  Google Scholar 

  13. Du Y, Liu J-w, Shao C-y, Yang L-r (2019) Synthesis and characterization of luminescent metal–organic frameworks for the selective recognition of Cu2+ cation and Tryptophan. J Alloy Compd 781:904–912. https://doi.org/10.1016/j.jallcom.2018.12.157

    Article  CAS  Google Scholar 

  14. Huang Y, Sun Y, Zheng X, Aoki T, Pattengale B, Huang J, He X, Bian W, Younan S, Williams N, Hu J, Ge J, Pu N, Yan X, Pan X, Zhang L, Wei Y, Gu J (2019) Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat Commun. https://doi.org/10.1038/s41467-019-08877-9

    Article  Google Scholar 

  15. Zhang J, Huang Y, Li G, Wei Y (2019) Recent advances in alkoxylation chemistry of polyoxometalates: from synthetic strategies, structural overviews to functional applications. Coord Chem Rev 378:395–414. https://doi.org/10.1016/j.ccr.2017.10.025

    Article  CAS  Google Scholar 

  16. Zhang H, Liu W, Li A, Zhang D, Li X, Zhai F, Chen L, Chen L, Wang Y, Wang S (2019) Three mechanisms in one material: uranium capture by a polyoxometalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.201909718

    Article  Google Scholar 

  17. Zheng Q, Kupper M, Xuan W, Oki H, Tsunashima R, Long D-L, Cronin L (2019) Anisotropic polyoxometalate cages assembled via layers of heteroanion templates. J Am Chem Soc 141(34):13479–13486. https://doi.org/10.1021/jacs.9b04533

    Article  CAS  Google Scholar 

  18. Marrot J, Pilette MA, Haouas M, Floquet S, Taulelle F, Lopez X, Poblet JM, Cadot E (2012) Polyoxometalates paneling through Mo2O2S2 coordination: cation-directed conformations and chemistry of a supramolecular hexameric scaffold. J Am Chem Soc 134(3):1724–1737. https://doi.org/10.1021/ja2090383

    Article  CAS  Google Scholar 

  19. Yin P, Wu P, Xiao Z, Li D, Bitterlich E, Zhang J, Cheng P, Vezenov DV, Liu T, Wei Y (2011) A double-tailed fluorescent surfactant with a hexavanadate cluster as the head group. Angew Chem Int Ed Engl 50(11):2521–2525. https://doi.org/10.1002/anie.201006144

    Article  CAS  Google Scholar 

  20. Song Y-F, McMillan N, Long D-L, Kane S, Malm J, Riehle MO, Pradeep CP, Gadegaard N, Cronin L (2009) Micropatterned surfaces with covalently grafted unsymmetrical polyoxometalate-hybrid clusters lead to selective cell adhesion. J Am Chem Soc 131(4):1340–1341. https://doi.org/10.1021/ja807091v

    Article  CAS  Google Scholar 

  21. Huang B, Wang N, Yang K, Ke D, Fang Y, Hu X, Wu B, Xiao Z, Wu P, Wei Y (2018) Stepwise syntheses and supramolecular assemblies of a series of polyoxovanadate hybrids with various architectures. New J Chem 42(8):5853–5858. https://doi.org/10.1039/c7nj04727d

    Article  CAS  Google Scholar 

  22. Zhang L, Liu X, Sun F, Jian J, Sun X, Wu D, Yuan H (2019) Proton conducting in a new vanadoborate with 3D structure through hydrogen bonding. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2019.152505

    Article  Google Scholar 

  23. He J, Li J, Du W, Han Q, Wang Z, Li M (2018) A mesoporous metal-organic framework: potential advances in selective dye adsorption. J Alloy Compd 750:360–367. https://doi.org/10.1016/j.jallcom.2018.03.393

    Article  CAS  Google Scholar 

  24. Stuckart M, Monakhov KY (2019) Polyoxometalates as components of supramolecular assemblies. Chem Sci 10(16):4364–4376. https://doi.org/10.1039/C9SC00979E

    Article  CAS  Google Scholar 

  25. Li C, Mizuno N, Yamaguchi K, Suzuki K (2019) Self-assembly of anionic polyoxometalate-organic architectures based on lacunary phosphomolybdates and pyridyl ligands. J Am Chem Soc 141(19):7687–7692. https://doi.org/10.1021/jacs.9b02541

    Article  CAS  Google Scholar 

  26. Yi X, Izarova NV, Stuckart M, Guerin D, Thomas L, Lenfant S, Vuillaume D, van Leusen J, Duchon T, Nemsak S, Bourone SDM, Schmitz S, Koegerler P (2017) Probing frontier orbital energies of Co9(P2W15)3 polyoxometalate clusters at molecule-metal and molecule-water interfaces. J Am Chem Soc 139(41):14501–14510. https://doi.org/10.1021/jacs.7b07034

    Article  CAS  Google Scholar 

  27. Zhang J, Zhao Z, Zhang J, She S, Huang Y, Wei Y (2014) Spontaneous resolution of polyoxometalate-based inorganic-organic hybrids driven by solvent and common ion. Dalton Trans 43(46):17296–17302. https://doi.org/10.1039/c4dt01954g

    Article  CAS  Google Scholar 

  28. Liu S-M, Zhang Z, Li X-H, Jia H-J, Liu S-X (2018) Synthesis and photophysical properties of crystalline [EuW10O36]9–based polyoxometalates with lanthanide ions as counter cations. J Alloy Compd 761:52–57. https://doi.org/10.1016/j.jallcom.2018.05.144

    Article  CAS  Google Scholar 

  29. Xu X, Spasojevic-de Bire A, Ghermani NE, Wei Y, Novakovic S, Bosnjakovic-Pavlovic N, Wu P (2017) Experimental evidence of charge transfer in a functionalized hexavanadate: a high resolution X-ray diffraction study. Phys Chem Chem Phys 19(28):18162–18166. https://doi.org/10.1039/C7CP01840A

    Article  CAS  Google Scholar 

  30. Yvon C, Surman AJ, Hutin M, Alex J, Smith BO, Long D-L, Cronin L (2014) Polyoxometalate clusters integrated into peptide chains and as inorganic amino acids: solution- and solid-phase approaches. Angew Chem Int Ed 53(13):3336–3341. https://doi.org/10.1002/anie.201311135

    Article  CAS  Google Scholar 

  31. Hu X, Wang H, Huang B, Li N, Hu K, Wu B, Xiao Z, Wei Y, Wu P (2019) A new scheme for rational design and synthesis of polyoxovanadate hybrids with high antitumor activities. J Inorg Biochem 193:130–132. https://doi.org/10.1016/j.jinorgbio.2019.01.013

    Article  CAS  Google Scholar 

  32. Hutin M, Yvon C, Yan J, Macdonell A, Long D-L, Cronin L (2013) Programming the assembly of carboxylic acid-functionalised hybrid polyoxometalates. CrystEngComm 15(22):4422–4430. https://doi.org/10.1039/C3CE26816K

    Article  CAS  Google Scholar 

  33. Huang B, Xiao Z, Wu B, Hu X, Hu X, Wu P, Wei Y (2017) Synthesis, crystal structure and spectroscopic studies of a series of hexavanadate hybrids with multiple functional groups. Inorg Chem Front 4(1):165–170. https://doi.org/10.1039/c6qi00302h

    Article  CAS  Google Scholar 

  34. Monakhov KY, Bensch W, Koegerler P (2015) Semimetal-functionalised polyoxovanadates. Chem Soc Rev 44(23):8443–8483. https://doi.org/10.1039/c5cs00531k

    Article  CAS  Google Scholar 

  35. Li J-K, Dong J, Wei C-P, Yang S, Chi Y-N, Xu Y-Q, Hu C-W (2017) Controllable synthesis of lindqvist alkoxopolyoxovanadate clusters as heterogeneous catalysts for sulfoxidation of sulfides. Inorg Chem 56(10):5748–5756. https://doi.org/10.1021/acs.inorgchem.7b00366

    Article  CAS  Google Scholar 

  36. Wang K, He Y, Zhao Y, Ma P, Wang J (2019) A propionate-functionalized polyoxovanadate K2[V10O16(OH)6(CH3CH2CO2)6]·20H2O: as catalyst for degradation of methylene blue. J Mol Struct 1195:184–188. https://doi.org/10.1016/j.molstruc.2019.05.130

    Article  CAS  Google Scholar 

  37. Taleghani S, Mirzaei M, Eshtiagh-Hosseini H, Frontera A (2016) Tuning the topology of hybrid inorganic–organic materials based on the study of flexible ligands and negative charge of polyoxometalates: a crystal engineering perspective. Coord Chem Rev 309:84–106. https://doi.org/10.1016/j.ccr.2015.10.004

    Article  CAS  Google Scholar 

  38. Anyushin AV, Kondinski A, Parac-Vogt TN (2019) Hybrid polyoxometalates as post-functionalization platforms: from fundamentals to emerging applications. Chem Soc Rev. https://doi.org/10.1039/c8cs00854j

    Article  Google Scholar 

  39. Ji Y, Huang L, Hu J, Streb C, Song Y-F (2015) Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy Environ Sci 8(3):776–789. https://doi.org/10.1039/c4ee03749a

    Article  CAS  Google Scholar 

  40. Ge J, Hu J, Zhu Y, Zeb Z, Zang D, Qin Z, Huang Y, Zhang J, Wei Y (2019) Recent advances in polyoxometalates for applications in electrocatalytic hydrogen evolution reaction. Acta Phys Chim Sin 36(1):1906060–1906063. https://doi.org/10.3866/pku.whxb201906063

    Article  Google Scholar 

  41. Xiao Z, Chen K, Wu B, Li W, Wu P, Wei Y (2016) An easy way to construct polyoxovanadate-based organic-inorganic hybrids by stepwise functionalization. Eur J Inorg Chem 6:808–811. https://doi.org/10.1002/ejic.201501297

    Article  CAS  Google Scholar 

  42. Wu P, Xiao Z, Zhang J, Hao J, Chen J, Yin P, Wei Y (2011) DMAP-catalyzed esterification of pentaerythritol-derivatized POMs: a new route for the functionalization of polyoxometalates. Chem Commun (Camb) 47(19):5557–5559. https://doi.org/10.1039/c1cc10650c

    Article  CAS  Google Scholar 

  43. Santoni M-P, Pal AK, Hanan GS, Tang M-C, Venne K, Furtos A, Menard-Tremblay P, Malveau C, Hasenknopf B (2012) Coordination-driven self-assembly of polyoxometalates into discrete supramolecular triangles. Chem Commun 48(2):200–202. https://doi.org/10.1039/c1cc16155e

    Article  CAS  Google Scholar 

  44. Raizada M, Sama F, Ashafaq M, Shahid M, Ahmad M, Siddiqi ZA (2017) New hybrid polyoxovanadate–Cu complex with V···H interactions and dual aqueous-phase sensing properties for picric acid and Pd2+: x-ray analysis, magnetic and theoretical studies, and mechanistic insights into the hybrid’s sensing capabilities. J Mater Chem C 5(36):9315–9330. https://doi.org/10.1039/C7TC03172F

    Article  CAS  Google Scholar 

  45. Zhang Y, Wang X, Li S, Song B, Shao K, Su Z (2016) Ligand-directed assembly of polyoxovanadate-based metal-organic polyhedra. Inorg Chem 55(17):8770–8775. https://doi.org/10.1021/acs.inorgchem.6b01338

    Article  CAS  Google Scholar 

  46. Kastner K, Streb C (2013) Solvent-shielding allows the self-assembly of supramolecular 1D barium vanadate chains. CrystEngComm 15(24):4948–4955. https://doi.org/10.1039/C3CE40536B

    Article  CAS  Google Scholar 

  47. Lin X, Huang B, Xiong Z, Fang T, Zhang X, Xiao Z, Wu P (2018) Supramolecular architectures of polyoxometalate hybrids originating from halogen and hydrogen-bonding interactions. ChemistrySelect 3(39):11008–11011. https://doi.org/10.1002/slct.201802912

    Article  Google Scholar 

  48. Huang B, Xiao Z, Wang Y, Ke D, Zhu C, Zhang S, Hu X, Wu P (2019) Destroy the inherent symmetry of vanadium-based inorganic cluster through chiral organic ligand: synthesis and characterization of a polyoxovanadate-derived amino acid ester hybrid. J Mol Struct 1195:10–16. https://doi.org/10.1016/j.molstruc.2019.05.114

    Article  CAS  Google Scholar 

  49. Wilson EF, Miras HN, Rosnes MH, Cronin L (2011) Real-time observation of the self-assembly of hybrid polyoxometalates using mass spectrometry. Angew Chem Int Ed Engl 50(16):3720–3724. https://doi.org/10.1002/anie.201006938

    Article  CAS  Google Scholar 

  50. Fernandes DM, Barbosa ADS, Pires J, Balula SS, Cunha-Silva L, Freire C (2013) Novel composite material Polyoxovanadate@MIL-101(Cr): a highly efficient electrocatalyst for ascorbic acid oxidation. ACS Appl Mater Interfaces 5(24):13382–13390. https://doi.org/10.1021/am4042564

    Article  CAS  Google Scholar 

  51. Chen H-Y, Wee G, Al-Oweini R, Friedl J, Tan KS, Wang Y, Wong CL, Kortz U, Stimming U, Srinivasan M (2014) A polyoxovanadate as an advanced electrode material for supercapacitors. ChemPhysChem 15(10):2162–2169. https://doi.org/10.1002/cphc.201400091

    Article  CAS  Google Scholar 

  52. VanGelder LE, Petel BE, Nachtigall O, Martinez G, Brennessel WW, Matson EM (2018) Organic functionalization of polyoxovanadate-alkoxide clusters: improving the solubility of multimetallic charge carriers for nonaqueous redox flow batteries. Chemsuschem 11(23):4139–4149. https://doi.org/10.1002/cssc.201802029

    Article  CAS  Google Scholar 

  53. Hartung S, Bucher N, Chen HY, Al-Oweini R, Sreejith S, Borah P, Zhao Y, Kortz U, Stimming U, Hoster HE, Srinivasan M (2015) Vanadium-based polyoxometalate as new material for sodium-ion battery anodes. J Power Sources 288:270–277. https://doi.org/10.1016/j.jpowsour.2015.04.009

    Article  CAS  Google Scholar 

  54. Chao L, Kai Z, Yuan W (2017) Catalytic properties of platinum nanoclusters supported on iron oxides for the solvent-free hydrogenation of halonitrobenzene. Acta Phys Chim Sin 33(5):984–992. https://doi.org/10.3866/pku.whxb201702084

    Article  Google Scholar 

  55. Li X-X, Zhang L-J, Cui C-Y, Wang R-H, Yang G-Y (2018) Designed construction of cluster organic frameworks from lindqvist-type polyoxovanadate cluster. Inorg Chem 57(16):10323–10330. https://doi.org/10.1021/acs.inorgchem.8b01528

    Article  CAS  Google Scholar 

  56. Bai Y, Yan Z, Kang L, Liu Z-H (2019) Preparation and capacitance of V2O5/holey graphene hybrid aerogel electrode with high performance. J Alloy Compd 780:792–799. https://doi.org/10.1016/j.jallcom.2018.12.006

    Article  CAS  Google Scholar 

  57. Linnenberg O, Kondinski A, Stocker C, Monakhov KY (2017) The Cu(i)-catalysed Huisgen 1,3-dipolar cycloaddition route to (bio-)organic functionalisation of polyoxovanadates. Dalton Trans 46(45):15636–15640. https://doi.org/10.1039/C7DT03376A

    Article  CAS  Google Scholar 

  58. Linnenberg O, Mayerl L, Monakhov KY (2018) The Heck reaction as a tool to expand polyoxovanadates towards thiol-sensitive organic–inorganic hybrid fluorescent switches. Dalton Trans 47(41):14402–14407. https://doi.org/10.1039/C8DT02340A

    Article  CAS  Google Scholar 

  59. Hu X, Xiao Z, Huang B, Hu X, Cheng M, Lin X, Wu P, Wei Y (2017) Syntheses and post-functionalization of tri-substituted polyalkoxohexavanadates containing tris(alkoxo) ligands. Dalton Trans 46(26):8505–8513. https://doi.org/10.1039/c7dt01543g

    Article  CAS  Google Scholar 

  60. Huang B, Hu X, Hu X, Wang N, Yang K, Xiao Z, Wu P (2017) Synthesis and characterization of a novel inorganic-organic hybrid material based on polyoxometalates and dicyclohexylcarbodiimide. J Mol Struct 1149:42–47. https://doi.org/10.1016/j.molstruc.2017.07.088

    Article  CAS  Google Scholar 

  61. Shen J-Q, Zhang Y, Zhang Z-M, Li Y-G, Gao Y-Q, Wang E-B (2014) Polyoxoniobate-based 3D framework materials with photocatalytic hydrogen evolution activity. Chem Commun 50(45):6017–6019. https://doi.org/10.1039/c3cc49245a

    Article  CAS  Google Scholar 

  62. Sullivan KP, Neiwert WA, Zeng H, Mehta AK, Yin Q, Hillesheim DA, Vivek S, Yin P, Collins-Wildman DL, Weeks ER, Liu T, Hill CL (2017) Polyoxometalate-based gelating networks for entrapment and catalytic decontamination. Chem Commun 53(83):11480–11483. https://doi.org/10.1039/c7cc05657e

    Article  CAS  Google Scholar 

  63. Gong Y-R, Chen W-C, Zhao L, Shao K-Z, Wang X-L, Su Z-M (2018) Functionalized polyoxometalate- based metalorganic cuboctahedra for selective adsorption toward cationic dyes in aqueous solution. Dalton Trans 47(37):12979–12983. https://doi.org/10.1039/c8dt02580k

    Article  CAS  Google Scholar 

  64. Li S, Zhang L, Lu B, Yan E, Wang T, Li L, Wang J, Yu Y, Mu Q (2018) A new polyoxovanadate-based metal-organic framework: synthesis, structure and photo-/electro-catalytic properties. New J Chem 42(9):7247–7253. https://doi.org/10.1039/c7nj05032a

    Article  CAS  Google Scholar 

  65. Amiinu IS, Pu Z, Liu X, Owusu KA, Monestel HGR, Boakye FO, Zhang H, Mu S (2017) Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-Air batteries. Adv Func Mater 27(44):1702300. https://doi.org/10.1002/adfm.201702300

    Article  CAS  Google Scholar 

  66. Tang Y-J, Gao M-R, Liu C-H, Li S-L, Jiang H-L, Lan Y-Q, Han M, Yu S-H (2015) Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew Chem Int Ed 54(44):12928–12932. https://doi.org/10.1002/anie.201505691

    Article  CAS  Google Scholar 

  67. Jing S, Zhang L, Luo L, Lu J, Yin S, Shen PK, Tsiakaras P (2018) N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction. Appl Catal B 224:533–540. https://doi.org/10.1016/j.apcatb.2017.10.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the kind help from Juanjuan Han, Institute of Chemistry, Chinese Academy of Sciences, for the characterizations of HR-ESI–MS. This work is supported by National Natural Science Foundation of China (No. 21271068, 21401050), the Natural Science Foundation of Hubei Province (No. 2015CFA131), and Wuhan Applied Basic Research Program (No. 2014010101010020).

Author information

Authors and Affiliations

Authors

Contributions

B. Huang, P. Wu, Z. Xiao, M. Liang, and P. Jiang provided the idea of this work. B. Huang, D. Ke conducted the experiments. B. Huang, D. Ke, Z. Xiao, and P. Wu conducted and analysed the single-crystal X-ray diffraction data, molecular simulation, and energy calculation. B. Huang, D. Ke, Z. Xiong, Y. Wang, K. Hu, M. Liang, P. Jiang conducted and analysed the spectroscopic characterizations. Electrochemical tests were conducted by B. Huang, M. Liang, and P. Jiang. All authors have contributed themselves to the organization of the manuscript. B. Huang and D. Ke contributed equally to this work.

Corresponding authors

Correspondence to Peng Jiang, Minghui Liang, Zicheng Xiao or Pingfan Wu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1754 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Ke, D., Xiong, Z. et al. Covalent hybrid materials between polyoxometalates and organic molecules for enhanced electrochemical properties. J Mater Sci 55, 5554–5570 (2020). https://doi.org/10.1007/s10853-020-04404-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04404-0

Navigation