Skip to main content
Log in

Graphitic carbon nitride nanodots: electronic structure and its influence factors

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The graphitic carbon nitride (g-C3N4) nanodots (CN-dots) exhibit properties different from those of g-C3N4 crystal. However, the electronic structure of g-C3N4 nanodots, which determines their properties intrinsically, has not been explored comprehensively. Herein, the many-body Green’s function theory is used to analyze the electronic and optical properties of CN-dots; and the effects of size, shape, and functional group on properties were systematically investigated. The large size and the nonlinear shape are effective means to decrease electronic band gap. The increase in the functional group –CHO can make the complex composed of 1D g-C3N4 and 2D g-C3N4 change from type I to type II heterojunction. Different functional groups are related to the absorption edge of CN-dots, while have little effect on the electron–hole recombination rate. These results can provide theoretical support for modifying the properties of CN-dots and further designing CN-dots-based functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ong W, Tan L, Ng YH, Yong S, Chai S (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329

    CAS  Google Scholar 

  2. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80

    CAS  Google Scholar 

  3. Xu C, Han Q, Zhao Y, Wang L, Li Y, Qu L (2015) Sulfur-doped graphitic carbon nitride decorated with graphene quantum dots for an efficient metal-free electrocatalyst. J Mater Chem 3(5):1841–1846

    CAS  Google Scholar 

  4. She X, Liu L, Ji H, Mo Z, Li Y, Huang L, Du D, Hui X, Li H (2016) Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl Catal B. https://doi.org/10.1016/j.apcatb.2015.12.046

    Article  Google Scholar 

  5. Li J, Shen B, Hong Z, Lin B, Gao B, Chen Y (2012) A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem Commun 48(98):12017–12019

    CAS  Google Scholar 

  6. Xu C-Q, Li K, Zhang W-D (2017) Enhancing visible light photocatalytic activity of nitrogen-deficient g-C3N4 via thermal polymerization of acetic acid-treated melamine. J Colloid Interface Sci 495:27–36

    CAS  Google Scholar 

  7. Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee S, Zhong J, Kang Z (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225):970–974

    CAS  Google Scholar 

  8. Huang Z, Song J, Pan L, Wang Z, Zhang X, Zou J, Mi W, Zhang X, Wang L (2015) Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy 12:646–656

    CAS  Google Scholar 

  9. Lin Z, Wang X (2013) Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angew Chem 52(6):1735–1738

    CAS  Google Scholar 

  10. Feng J, Ma H, Chen T, Liu C, Ma Y (2018) Passivated codoping can improve the solar-to-hydrogen efficiency of graphitic carbon nitride. J Phys Chem C 122(13):7296–7302

    CAS  Google Scholar 

  11. Gao G, Jiao Y, Ma F, Jiao Y, Waclawik ER, Du A (2015) Carbon nanodot decorated graphitic carbon nitride: new insights into the enhanced photocatalytic water splitting from ab initio studies. Phys Chem Chem Phys 17(46):31140–31144

    CAS  Google Scholar 

  12. Ma Z, Sa R, Li Q, Wu K (2016) Interfacial electronic structure and charge transfer of hybrid graphene quantum dot and graphitic carbon nitride nanocomposites: insights into high efficiency for photocatalytic solar water splitting. Phys Chem Chem Phys 18(2):1050–1058

    CAS  Google Scholar 

  13. Feng J, Liu G, Yuan S, Ma Y (2017) Influence of functional groups on water splitting in carbon nanodot and graphitic carbon nitride composites: a theoretical mechanism study. Phys Chem Chem Phys 19(7):4997–5003

    CAS  Google Scholar 

  14. Mao J, Peng T, Zhang X, Li K, Ye L, Zan L (2013) Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Catal Sci Technol 3(5):1253–1260

    CAS  Google Scholar 

  15. Jiao Y, Zheng Y, Chen P, Jaroniec M, Qiao S (2017) Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J Am Chem Soc 139(49):18093–18100

    CAS  Google Scholar 

  16. Shi H, Chen G, Zhang C, Zou Z (2014) Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. ACS Catal 4(10):3637–3643

    CAS  Google Scholar 

  17. Xu D, Cheng B, Wang W, Jiang C, Yu J (2018) Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity. Appl Catal B 231:368–380

    CAS  Google Scholar 

  18. Wang K, Li Q, Liu B, Cheng B, Ho W, Yu J (2015) Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl Catal B 176:44–52

    Google Scholar 

  19. Wang Y, Zhang J, Wang X, Antonietti M, Li H (2010) Boron- and fluorine-containing mesoporous carbon nitride polymers: metal-free catalysts for cyclohexane oxidation. Angew Chem 49(19):3356–3359

    CAS  Google Scholar 

  20. Jie L, Chuanbao C, Hesun Z (2007) Synthesis and characterization of graphite-like carbon nitride nanobelts and nanotubes. Nanotechnology 18(11):115605

    Google Scholar 

  21. Gao X, Jiao X, Zhang L, Zhu W, Xu X, Ma H, Chen T (2015) Cosolvent-free nanocasting synthesis of ordered mesoporous g-C3N4 and its remarkable photocatalytic activity for methyl orange degradation. RSC Adv 5(94):76963–76972. https://doi.org/10.1039/C5RA13438B

    Article  CAS  Google Scholar 

  22. Kessler FK, Zheng Y, Schwarz D, Merschjann C, Schnick W, Wang X, Bojdys MJ (2017) Functional carbon nitride materials—design strategies for electrochemical devices. Nat Rev Mater 2:17030. https://doi.org/10.1038/natrevmats.2017.30

    Article  CAS  Google Scholar 

  23. Tahir M, Cao C, Butt FK, Idrees F, Mahmood N, Ali Z, Aslam I, Tanveer M, Rizwan M, Mahmood T (2013) Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis. J Mater Chem 1(44):13949–13955

    CAS  Google Scholar 

  24. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737

    CAS  Google Scholar 

  25. Li H, Kang Z, Liu Y, Lee ST (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22(46):24230–24253

    CAS  Google Scholar 

  26. Liu Q, Chen T, Guo Y, Zhang Z, Fang X (2016) Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution. Appl Catal B 193:248–258

    CAS  Google Scholar 

  27. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744

    CAS  Google Scholar 

  28. Cao L, Sahu S, Anilkumar P, Bunker CE, Xu J, Fernando KS, Wang P, Guliants EA, Tackett KN, Sun Y-P (2011) Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond. J Am Chem Soc 133(13):4754–4757

    CAS  Google Scholar 

  29. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee ST (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49(26):4430–4434

    CAS  Google Scholar 

  30. Kang Z, Liu Y, Lee S-T (2011) Small-sized silicon nanoparticles: new nanolights and nanocatalysts. Nanoscale 3(3):777–791

    CAS  Google Scholar 

  31. Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296(5571):1293–1297

    CAS  Google Scholar 

  32. Ming H, Yan Y, Ming J, Li X, Zhou Q, Huang H, Zheng J (2014) Porous TiO2 nanoribbons and TiO2 nanoribbon/carbon dot composites for enhanced Li-ion storage. RSC Adv 4(25):12971–12976

    CAS  Google Scholar 

  33. Mo R, Lei Z, Sun K, Rooney D (2014) Facile synthesis of anatase TiO2 quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries. Adv Mater 26(13):2084–2088

    CAS  Google Scholar 

  34. Wang W, Jimmy CY, Shen Z, Chan DK, Gu T (2014) g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application. Chem Commun 50(70):10148–10150

    CAS  Google Scholar 

  35. Wang X, Sun G, Li N, Chen P (2016) Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem Soc Rev 45(8):2239–2262

    CAS  Google Scholar 

  36. Corp KL, Schlenker CW (2017) Ultrafast spectroscopy reveals electron-transfer cascade that improves hydrogen evolution with carbon nitride photocatalysts. J Am Chem Soc 139(23):7904–7912

    CAS  Google Scholar 

  37. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    CAS  Google Scholar 

  38. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105(22):9982–9985

    CAS  Google Scholar 

  39. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  40. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    CAS  Google Scholar 

  41. Rohlfing M, Krüger P, Pollmann J (1995) Efficient scheme for GW quasiparticle band-structure calculations with applications to bulk Si and to the Si (001)-(2 × 1) surface. Phys Rev B 52(3):1905

    CAS  Google Scholar 

  42. Rohlfing M, Louie SG (2000) Electron-hole excitations and optical spectra from first principles. Phys Rev B 62(8):4927

    CAS  Google Scholar 

  43. Eda G, Lin YY, Mattevi C, Yamaguchi H, Chen HA, Chen IS, Chen CW, Chhowalla M (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22(4):505–509

    CAS  Google Scholar 

  44. Frisch MJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Fox DJ (2015) Gaussian 09, revision A. 02. Gaussian Inc, Wallingford

    Google Scholar 

  45. Hu W, Lin L, Zhang R, Yang C, Yang J (2017) Highly efficient photocatalytic water splitting over edge-modified phosphorene nanoribbons. J Am Chem Soc 139(43):15429–15436

    CAS  Google Scholar 

  46. Zhai S, Guo P, Zheng J, Zhao P, Suo B, Wan Y (2018) Density functional theory study on the stability, electronic structure and absorption spectrum of small size g-C3N4 quantum dots. Comput Mater Sci 148:149–156

    CAS  Google Scholar 

  47. Liu G, Niu P, Sun C, Smith SC, Chen Z, Lu GQ, Cheng H-M (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132(33):11642–11648

    CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial support from the National Natural Science Foundation of China (NSFC) (G. Nos. 21903048, 21873055, 21833004, 21573131 and 21433006). We are also thankful to the High Performance Computing Center of Qufu Normal University for the use of computational resources.

Author information

Authors and Affiliations

Authors

Contributions

Jin Feng and Dapeng Zhang completed major experimental design, calculations, data analysis and article writing; Jiawei Li calculated the calculation of adsorption energy; Siwei Bi and Yuchen Ma helped to modify the experimental ideas and language of manuscript.

Corresponding authors

Correspondence to Jin Feng, Siwei Bi or Yuchen Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 12721 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Zhang, D., Li, J. et al. Graphitic carbon nitride nanodots: electronic structure and its influence factors. J Mater Sci 55, 5488–5498 (2020). https://doi.org/10.1007/s10853-020-04396-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04396-x

Navigation