Skip to main content

Advertisement

Log in

Hierarchical porous LixV2O4/C anode assembled with nanoflake for high-performance lithium-ion battery

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Vanadium-based oxides are considered to be a type of promising electrode materials for Li-ion batteries due to their low cost and high theoretical capacity. However, the dissolution of vanadium (V3+), low electron conductivity and volume change during charge and discharge processes hamper their application. A novel porous structure was synthesized by hydrothermal method in this study. The hierarchical porous structure is assembled with nanoflake and coated with carbon. The hierarchical porous structure provides multitudinous reaction sites, shortens the Li-ion transfer distance and buffers the volume variety. The carbon improves the conductivity of the composite. It is also found that the tetravalent and trivalence vanadium coexists in the prepared composite. V4+ can prevent V3+ from dissolution. The synergistic effects of hierarchical porous structure, carbon coating and the coexistence of V3+ and V4+ endow the composite with excellent performance as an anode material. The composite exhibits a low resistance and sizeable capacitive effects during the charge and discharge process, which are beneficial to the energy storage performance. A discharge capacity of 439.6 mAh g−1 after 100 cycles at a current density of 0.1 A g−1 is delivered, which is 90.0% of its initial specific capacity (488.2 mAh g−1). The composite processes a decent prospect in high-performance Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    CAS  Google Scholar 

  2. Mai L, Yan M, Zhao Y (2017) Track batteries degrading in real time. Nature 546(7659):469–470

    CAS  Google Scholar 

  3. Wang B, Guo R, Zheng M et al (2018) Embedded binary functional materials/cellulose-based paper as freestanding anode for lithium ion batteries. Electrochim Acta 260:1–10

    CAS  Google Scholar 

  4. Zhou J, Zhao B, Song J et al (2018) The enhanced cycling stability and rate capability of sodium-modified Li3VO4 anode material for lithium-ion batteries. Solid State Ionics 322:30–38

    CAS  Google Scholar 

  5. Feng L et al (2019) In situ XRD observation of CuO anode phase conversion in lithium-ion batteries. J Mater Sci 54(2):1520–1528. https://doi.org/10.1007/s10853-018-2885-0

    Article  CAS  Google Scholar 

  6. Xiang Y, Yang Z, Wang S, Mohammad S, Yu J, Kumar N, Yamauchi Y (2018) Pseudocapacitive Behavior of Fe2O3 Anode and Its Contribution to High Reversible Capacity in Lithium Ion Batteries. Nanoscale 10(37):18010–18018

    CAS  Google Scholar 

  7. Ma L et al (2019) Facile fabrication of NiO flakes and reduced graphene oxide (NiO/RGO) composite as anode material for lithium-ion batteries. J Mater Sci 30(6):5874–5880. https://doi.org/10.1007/s10854-019-00885-1

    Article  CAS  Google Scholar 

  8. Sharma N, Puthusseri D, Thotiyl MO et al (2017) Hard carbon and Li4Ti5O12-based physically mixed anodes for superior Li-battery performance with significantly reduced Li content: a case of synergistic materials cooperation. ACS Omega 2:8818–8824

    CAS  Google Scholar 

  9. Wang Y, Song N, Song X et al (2018) Metallic VO2 monolayer as an anode material for Li, Na, K, Mg or Ca ion storage: a first-principle study, Rsc. Advances 8(20):10848–10854

    CAS  Google Scholar 

  10. Li X, Fu J, Pan Z et al (2016) Peapod-like V2O3 nanorods encapsulated into carbon as binder-free and flexible electrodes in lithium-ion batteries. J Power Sources 331(1):58–66

    CAS  Google Scholar 

  11. Song J, Park H, Kim K, Jo Y, Kim J, Jeong YU, Kim Y et al (2010) Electrochemical characteristics of lithium vanadate, Li1+ xVO2, new anode materials for lithium ion batteries. J Power Sources 195(18):6157–6161

    CAS  Google Scholar 

  12. Liu P, Zhu K, Xu Y, Bian K, Wang J, Tai G, Gao Y, Liu J (2017) Hierarchical porous and intercalation-type V2O3 for high-performance anode materials of Li-ion batteries. Chem A Euro J 23(31):7538–7544

    CAS  Google Scholar 

  13. Wang J, Liu Z, Yang W, Han L, Wei M (2018) One-step synthesis of porous V2O3@C hollow spheres as a high-performance anode for lithium-ion batteries. Chem Commun 54(53):7346–7349

    CAS  Google Scholar 

  14. Zeng L, Zheng C, Xu J, Fei H, Wei M (2013) Composites of V2O3-ordered mesoporous carbon as anode materials for lithium-ion batteries. Carbon 62:382–388

    CAS  Google Scholar 

  15. Zhang Y, Pan A, Liang S, Chen T, Tang Y, Tan X (2014) Reduced graphene oxide modified V2O3 with enhanced performance for lithium-ion battery. Mater Lett 137(15):174–177

    CAS  Google Scholar 

  16. Shi Y, Zhang Z, Wexler D, Chou S, Gao J, Abruna H, Wang J (2015) Facile synthesis of porous V2O3/C composites as lithium storage material with enhanced capacity and good rate capability. J Power Sources 275(1):392–398

    CAS  Google Scholar 

  17. Zhao H, Liu L, Zhang X, Gao R, Hu Z, Liu X (2016) Facile synthesis of carbon-coated LiVO3, with enhanced electrochemical performances as cathode materials for lithium-ion batteries. Ceram Int 43(2):2343–2349

    Google Scholar 

  18. Wang B, Sun D, Guo R, Liu Z, Meng L, Zheng M (2018) Amorphous MnO2-modified Li3V2(PO4)3/C as high-performance cathode for LIBs: the double effects of surface coating. J Mater Sci 53(4):2709–2724. https://doi.org/10.1007/s10853-017-1690-5

    Article  CAS  Google Scholar 

  19. Wang Y, Zhang H, Admar A, Luo J, Wong C, Borgna A, Lin J (2012) Improved cyclability of lithium-ion battery anode using encapsulated V2O3 nanostructures in well-graphitized carbon fiber. Rsc Adv 2(13):5748–5753

    CAS  Google Scholar 

  20. Cai G, Yang Y, Guo R, Zhang C, Wu C, Guo W, Jiang H (2015) Synthesis and low temperature electrochemical properties of CeO2 and C co-modified Li3V2(PO4)3 cathode materials for lithium-ion batteries. Electrochim Acta 174(20):1131–1140

    CAS  Google Scholar 

  21. Wu R, Zhou K, Chen Z et al (2015) In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv Mater 27(19):3038–3044

    CAS  Google Scholar 

  22. Jin J, Zhou K et al (2018) Tuning ZnSe/CoSe in MOF-derived N-doped porous carbon/CNTs for high-performance lithium storage. J Mater Chem A 6(32):15710–15717

    CAS  Google Scholar 

  23. Feng T et al (2019) Investigation of ordered mesoporous carbon@MnO core–shell nanospheres as anode material for lithium-ion batteries. J Mater Sci 54(8):6461–6470. https://doi.org/10.1007/s10853-018-03307-5

    Article  CAS  Google Scholar 

  24. Han C, Liu F, Liu J, Li Q, Meng J, Shao B, Mai L (2018) Facile template-free synthesis of uniform carbon-confined V2O3 hollow spheres for stable and fast lithium storage. J Mater Chem A 6(15):6220–6224

    CAS  Google Scholar 

  25. Yang S, Gong Y, Liu Z, Zhan L, Hashim DP, Ma L, Ajayan PM (2013) Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett 13(4):1596–1601

    CAS  Google Scholar 

  26. Palanisamy K, Um JH, Jeong M, Yoon W (2016) Porous V2O5/RGO/CNT hierarchical architecture as a cathode material: emphasis on the contribution of surface lithium storage. Sci Rep 6:31275

    CAS  Google Scholar 

  27. Yu P, Liu X, Wang L, Tian C, Yu H, Fu H (2017) Urchin-like V2O3/C hollow nanospheres hybrid for high-capacity and long-cycle-life lithium storage. Acs Sus Chem Engin 5(12):11238–11245

    CAS  Google Scholar 

  28. Jia B, Qin M, Zhang Z, Li S et al (2016) Hollow porous VOx/C nanoscrolls as high-performance anodes for lithium-ion batteries. ACS Appl Mater Interfaces 8(39):25954–25961

    CAS  Google Scholar 

  29. Niu C, Huang M, Wang P, Mai L et al (2016) Carbon-supported and nanosheet-assembled vanadium oxide microspheres for stable lithium-ion battery anodes 9(1):128–138

    CAS  Google Scholar 

  30. Zhao D, Zheng L, Xiao Y, Wang X, Cao M (2015) Lithium storage in microstructures of amorphous mixed-valence vanadium oxide as anode materials. Chemsuschem 8(13):2212–2222

    CAS  Google Scholar 

  31. Yu M, Zeng Y, Han Y, Cheng X, Zhao W, Liang C, Lu X (2015) Valence-optimized vanadium oxide super capacitor electrodes exhibit ultrahigh capacitance and super long cyclic durability of 100000 cycles. Adv Func Mater 25(23):3534–3540

    CAS  Google Scholar 

  32. Song Y, Liu T, Yao B, Kou T, Feng D, Liu X, Li Y (2017) Amorphous mixed valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability. Small 13(16):1700067

    Google Scholar 

  33. Palomares V, Serras P, Brand HE, Rojo T, Sharma N (2015) Structural evolution of mixed valent (V3+/V4+) and V4+ sodium vanadium fluorophosphates as cathodes in sodium-ion batteries: comparisons, overcharging and mid-term cycling. J Mater Chem A 3(45):23017–23027

    CAS  Google Scholar 

  34. Holtstiege F, Schmuch R, Winter M, Brunklaus G, Placke T (2018) New insights into pre-lithiation kinetics of graphite anodes via nuclear magnetic resonance spectroscopy. J Power Sources 378:522–526

    CAS  Google Scholar 

  35. Wang Y, Zhang H, Admar AS, Luo J, Wong C, Borgna A, Lin J (2012) Improved cyclability of lithium-ion battery anode using encapsulated V2O3 nanostructures in well-graphitized carbon fiber. Rsc Advances 2(13):5748–5753

    CAS  Google Scholar 

  36. Liu H, Wang Y, Wang K, Hosono E, Zhou H (2009) Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. J Mater Chem 19(18):2835–2840

    CAS  Google Scholar 

  37. Si Y, Liu G, Deng C, Liu W, Li H, Tang L (2017) Facile synthesis and electrochemical properties of amorphous FeVO4, as cathode materials for lithium secondary batteries. J Electroanal Chem 787(15):19–23

    CAS  Google Scholar 

  38. Wang X, Han W, Chen H, Bai J, Tyson TA, Yu X, Yang X (2011) Amorphous hierarchical porous GeO(x) as high-capacity anodes for Li ion batteries with very long cycling life. J Am Chem Soc 133(51):20692–20695

    CAS  Google Scholar 

  39. Christmann T, Felde B, Niessner W, Schalch D, Scharmann A (1996) Thermochromic VO2 thin films studied by photoelectron spectroscopy. Thin Solid Films 287(1–2):134–138

    CAS  Google Scholar 

  40. Liu J, Xia H, Xue D, Lu L (2009) Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J Am Chem Soc 131(34):12086–12087

    CAS  Google Scholar 

  41. Glushenkov AM, Hassan MF, Stukachev VI, Guo Z, Liu H, Kuvshinov GG, Chen Y (2010) Growth of V2O5 nanorods from ball-milled powders and their performance in cathodes and anodes of lithium-ion batteries. J Solid State Electrochem 14(10):1841–1846

    CAS  Google Scholar 

  42. Shahid M, Shakir I, Yang S, Kang D (2010) Facile synthesis of core–shell SnO2/V2O5 nanowires and their efficient photocatalytic property. Mater Chem Phys 124(1):619–622

    CAS  Google Scholar 

  43. Jiang L, Qu Y, Ren Z, Peng Y, Zhao D, Zhou W, Wang L, Fu H (2015) In situ carbon-coated yolk-shell V2O3 microspheres for lithium-ion batteries. Acs Appl Mater Inter 7(35):1595–1601

    CAS  Google Scholar 

  44. Wu J, Hu J, Song K, Xu J, Gao H (2017) Spirulina-derived nitrogen-doped porous carbon as carbon/S composite cathodes for high cyclability lithium–sulphur batteries. J Alloy Compd 704(15):1–6

    CAS  Google Scholar 

  45. Yi T, Han X, Chen B et al (2017) Porous sphere-like LiNi0.5Mn1.5O4-CeO2 composite with high cycling stability as cathode material for lithium ion battery. J Alloy Compd 703(5):103–113

    CAS  Google Scholar 

  46. Won J, Ko YN, Lee JK, Kang Y et al (2015) Superior electrochemical properties of rutile VO2-carbon composite microspheres as a promising anode material for lithium ion batteries. Electrochim Acta 156(20):179–187

    CAS  Google Scholar 

  47. Yang Y, Li J, Chen D, Zhao J (2017) Spray drying-assisted synthesis of Li3VO4/C/CNTs composites for high-performance lithium ion battery anodes. J Electrochem Soc 164(1):6001–6006

    Google Scholar 

  48. Wei M, Sugihara H, Honma I, Zhou H (2005) A new metastable phase of crystallized V2O4·0.25H2O nanowires: synthesis and electrochemical measurements. Adv Mater 17(24):2964–2969

    CAS  Google Scholar 

  49. Zhang J, Ni S, Ma J, Yang X, Zhang L (2016) High capacity and super long cycle life of Li3VO4/N–C hybrids as anode for high performance Li-ion batteries. J Power Sources 301(1):41–46

    CAS  Google Scholar 

  50. Guo H, Liu L, Wei Q, Shu H, Yang X, Yang Z, Wang X (2013) Electrochemical characterization of polyaniline–LiV3O8 nanocomposite cathode material for lithium ion batteries. Electrochim Acta 94(5):113–123

    CAS  Google Scholar 

  51. Xia X, Chao D, Zhang Y, Zhan J et al (2016) Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high rate and long cycle sodium ion storage. Small 12(22):3048–3058

    CAS  Google Scholar 

  52. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(6176):1210–1211

    CAS  Google Scholar 

  53. Lesel BK, Ko JS, Dunn B, Tolbert SH (2016) Mesoporous LixMn2O4 thin film cathodes for lithium ion pseudocapacitors. ACS Nano 10(8):7572

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Chunhui project of Ministry of education (Grant No. Z2016110), the National Natural Science Foundation of China (Grant No. 51372165) and the research program of application foundation of Qinghai province (Grant No. 2017-zj-729).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruisong Guo or Xiaohong Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 308 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Guo, R., Li, F. et al. Hierarchical porous LixV2O4/C anode assembled with nanoflake for high-performance lithium-ion battery. J Mater Sci 55, 5522–5533 (2020). https://doi.org/10.1007/s10853-020-04388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04388-x

Navigation