Skip to main content
Log in

Facile syntheses of cerium-based CeMO3 (M = Co, Ni, Cu) perovskite nanomaterials for high-performance supercapacitor electrodes

  • Advanced Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cerium-based CeMO3 (M = Co, Ni, Cu) perovskites were efficiently synthesized by electrospinning process. The structures, morphologies, elemental compositions, and valence states of CeMO3 perovskites were manifested in detail using X-ray diffraction analysis, Raman spectroscopic analysis, UV–vis diffuse reflectance spectroscopy, scanning electron microscope, transmission electron microscope, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy, respectively. The tolerance factor (t) was accurately calculated to confirm the perovskite structure stability. The electrochemical properties of CeMO3 perovskites were investigated, and the specific capacitances of CeCoO3, CeNiO3, and CeCuO3 perovskites are 128, 189, and 117 F g−1 at the current density of 0.5 A g−1, respectively. This study could provide an efficient and potential applications of the cerium-based perovskites into the supercapacitor electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Liu Yu, Dinh JD, Tade MO, Shao Z (2016) Design of perovskite oxides as anion-intercalation type electrodes for supercapacitors: cation leaching effect. ACS Appl Mater Interfaces 836:23774–23783

    Google Scholar 

  2. Chodankar NR, Dubal DP, Kwon Y, Kim D-H (2017) Direct growth of FeCo2O4 nanowire arrays on flexible stainless steel mesh for high-performance asymmetric supercapacitor. NPG Asia Mater 9:e419

    CAS  Google Scholar 

  3. Ling T, Da P, Zheng X, Ge B, Zhenpeng H, Mengying W, Xi-Wen D, Wen-Bin H, Jaroniec M, Qiao S-Z (2018) Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Sci Adv 4:eaau6261

    CAS  Google Scholar 

  4. Muhammed Shafi P, Joseph N, Thirumurugan A, Chandra Bose A (2018) Enhanced electrochemical performances of agglomeration-free LaMnO3 perovskite nanoparticles and achieving high energy and power densities with symmetric supercapacitor design. Chem Eng J 338:147–156

    Google Scholar 

  5. Abouali S, Garakani MA, Zhang B, Zheng-Long X, Heidari EK, Huang J-Q, Huang J, Kim J-K (2015) Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high performance supercapacitors. ACS Appl Mater Interfaces 7(24):13503–13511

    CAS  Google Scholar 

  6. Vidhyadharan B, Zain NKM, Misnon II, Aziz RA, Ismail J, Yusoff MM, Jose R (2014) High performance supercapacitor electrodes from electrospun nickel oxide nanowires. J Alloys Compd 610:143–150

    CAS  Google Scholar 

  7. Moosavifard SE, El-Kady MF, Rahmanifar MS, Kaner RB, Mousavi MF (2015) Designing 3D highly ordered nanoporous CuO electrodes for high performance asymmetric supercapacitors. ACS Appl Mater Interfaces 7(8):4851–4860

    CAS  Google Scholar 

  8. Tyler Mefford J, Hardin WG, Dai S, Johnston KP, Stevenson KJ (2014) Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat Mater 13:726–732

    Google Scholar 

  9. Galal A, Hassan HK, Jacob T, Atta NF (2018) Enhancing the specific capacitance of SrRuO3 and reduced graphene oxide in NaNO3, H3PO4 and KOH electrolytes. Electrochim Acta 260:738–747

    CAS  Google Scholar 

  10. Elsiddig ZA, Hui X, Wang D, Zhang W, Guo X, Zhang Y, Sun Z, Chen J (2017) Modulating Mn4+ ions and oxygen vacancies in nonstoichiometric LaMnO3 perovskite by a facile sol-gel method as high-performance supercapacitor electrodes. Electrochimica Acta 253:422–429

    CAS  Google Scholar 

  11. Shao T, You H, Zhai Z, Liu T, Li M, Zhang L (2017) Hollow spherical LaNiO3 supercapacitor electrode synthesized by a facile template-free method. Mater Lett 201:122–124

    CAS  Google Scholar 

  12. Guo Y, Shao T, You H, Li S, Li C, Zhang L (2017) Polyvinylpyrrolidone-assisted solvothermal synthesis of porous LaCoO3 nanospheres as supercapacitor electrode. Int J Electrochem Sci 12:7121–7127

    CAS  Google Scholar 

  13. Arjun N, Pan GT, Yang TCK (2017) The exploration of Lanthanum based perovskites and their complementary electrolytes for the supercapacitor applications. Results Phys 7:920–926

    Google Scholar 

  14. Dou C, Kakushima K, Ahmet P, Tsutsui K, Nishiyama A, Sugii N, Natori K, Hattori T, Iwai H (2012) Resistive switching behavior of a CeO2 based ReRAM cell incorporated with Si buffer layer. Microelectron Reliab 52:688–691

    CAS  Google Scholar 

  15. Wang Y, Guo CX, Liu J, Chen T, Yang H, Li CM (2011) CeO2 nanoparticles/graphene nanocomposite-based high performance supercapacitor. Dalton Trans 40:6388–9391

    CAS  Google Scholar 

  16. Maheswari N, Muralidharan G (2015) Supercapacitor behavior of cerium oxide nanoparticles in neutral aqueous electrolytes. Energy Fuels 29:8246–8253

    CAS  Google Scholar 

  17. Ghiasi M, Malekzadeh A (2014) Structural features of (Ce, La or Sr) (Mn or Co)O3 nano-perovskites as a catalyst for carbon monoxide oxidation. Acta Metallurgica Sinica (English Lett) 27(4):635–641

    CAS  Google Scholar 

  18. Chen J, He Z, Li G, An T, Shi H, Li Y (2017) Visible-light-enhanced photothermocatalytic activity of ABO3-type perovskites for the decontamination of gaseous styrene. Appl Catal B 209:146–154

    CAS  Google Scholar 

  19. Wang Q, Li Z, Bañares MA, Weng L-T, Qinfen G, Price J, Han W, Yeung KL (2019) A novel approach to high-performance aliovalent-substituted catalysts—2D bimetallic MOF-derived CeCuOx microsheets. Small 15:1903525

    CAS  Google Scholar 

  20. Fabbri E, Pergolesi D, Traversa E (2010) Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem Soc Rev 39:4355–4369

    CAS  Google Scholar 

  21. Kieslich G, Sun S, Cheetham AK (2015) An extended Tolerance Factor approach for organic–inorganic perovskites. Chem Sci 6:3430–3433

    CAS  Google Scholar 

  22. Qiao HW, Yang S, Wang Y, Chen X, Wen Tian Yu, Tang LJ, Qilin Cheng Yu, Hou HZ, Yang HG (2018) A gradient heterostructure based on tolerance factor in high-performance perovskite solar cells with 0.84 fill factor. Adv Mater 31(5):1804217

    Google Scholar 

  23. Li Z, Yang M, Park J-S, Wei S-H, Berry JJ, Zhu K (2016) Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem Mater 28:284–292

    Google Scholar 

  24. Shannon RD (1976) Revised effective ionic radii and systematic study of inter atomic distances in halides and chalcogenides. Acta Crystallogr A A32:751–767

    CAS  Google Scholar 

  25. Van Horn JD (2001) Electronic table of Shannon ionic Radii, 2001, downloaded from http://v.web.umkc.edu/vanhornj/shannonradii.htm. Accessed 13 Aug 2010

  26. Yuan C, Wang H-G, Liu J, Wu Q, Duan Q, Li Y (2017) Facile synthesis of Co3O4–CeO2 composite oxide nanotubes and their multifunctional applications for lithium ion batteries and CO oxidation. J Colloid Interface Sci 494:274–281

    CAS  Google Scholar 

  27. Cui Q, Dong X, Wang J, Li M (2008) Direct fabrication of cerium oxide hollow nanofibers by electrospinning. J Rare Earths 26(5):664–669

    Google Scholar 

  28. Hammouda SB, Zhao F, Safaei Z, Srivastava V, LakshmiRamasamy D, Iftekhar S, Kalliola S, Sillanpää M (2017) Degradation and mineralization of phenol in aqueous medium by heterogeneous monopersulfate activation on nanostructured cobalt based-perovskite catalysts ACoO3 (A = La, Ba, Sr and Ce): characterization, kinetics and mechanism study. Appl Catalysis B: Environ 215:60–73

    Google Scholar 

  29. Persson K (2016) Materials data on CeCuO3 (SG:221) by Materials Project, 2016. https://doi.org/10.17188/1315648

  30. Wang W-R, Da-Peng X, Wen-Hui S, Ding Z-H, Xue Y-F, Song G-X (2005) Raman active phonons in RCoO3 (R = La, Ce, Pr, Nd, Sm, Eu, Gd, and Dy) perovskites. Chin Phys Lett 22(9):2400–2402

    CAS  Google Scholar 

  31. Barad H-N, Keller DA, Rietwyk KJ, Ginsburg A, Tirosh S, Meir S, Anderson AY, Zaban A (2018) How transparent oxides gain some color: discovery of a CeNiO3 reduced bandgap phase as an absorber for photovoltaics. ACS Comb Sci 20:366–376

    CAS  Google Scholar 

  32. Persson K (2014) Materials data on CeNiO3 (SG:62) by Materials Project, 2014. https://doi.org/10.17188/1304611

  33. Schilling C, Hofmann A, Hess C, Ganduglia-Pirovano MV (2017) Raman spectra of polycrystalline CeO2: a density functional theory study. J Phys Chem C 121:20834–20849

    CAS  Google Scholar 

  34. Liu G, Yue R, Jia Y, Nia Y, Yang J, Liu H, Wang Z, Xiaofeng W, Chen Y (2013) Catalytic oxidation of benzene over Ce–Mn oxides synthesized by flame spraypyrolysis. Particuology 11(4):454–459

    CAS  Google Scholar 

  35. Yang J, Liu H, Martens WN, Frost RL (2010) Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt Oxide nanodiscs. J Phys Chem C 114:111–119

    CAS  Google Scholar 

  36. Na CW, Woo H-S, Kim H-J, Jeong U, Chung J-H, Lee J-H (2012) Controlled transformation of ZnO nanobelts into CoO/Co3O4 nanowires. CrystEngComm 14:3737–3741

    CAS  Google Scholar 

  37. Rashad M, Rüsing M, Berth G, Lischka K, Pawlis A (2013) CuO and Co3O4 nanoparticles: synthesis, characterizations, and Raman spectroscopy. J Nanomater 2013:1–6

    Google Scholar 

  38. Parwaiz S, Bhunia K, Das AK, Khan MM, Pradhan D (2017) Cobalt-doped ceria/reduced graphene oxide nanocomposite as an efficient oxygen reduction reaction catalyst and supercapacitor material. J Phys Chem C 121:20165–20176

    CAS  Google Scholar 

  39. Mironova-Ulmane N, Kuzmin A, Sildos I, Pärs M (2011) Polarisation dependent Raman study of single-crystal nickel oxide. Cent Eur J Phys 9:1096–1099

    CAS  Google Scholar 

  40. Luo M-F, Fang P, He M, Xie Y-L (2005) In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation. J Mol Catal A: Chem 239:243–248

    CAS  Google Scholar 

  41. Wang W, Liu Z, Liu Y, Xu C, Zheng C, Wang G (2003) A simple wet-chemical synthesis and characterization of CuO nanorods. Appl Phys A 76:417–420

    CAS  Google Scholar 

  42. Li H, Chen Y, Ma Q, Wang J, Che Q, Wang G, Tan Y, Yang P (2018) The effect of ZIF-8 on the phase structure and morphology of bead-like CuMn2O4/ZnO photocatalystic electrospun nanofibers. Mater Lett 216:199–202

    CAS  Google Scholar 

  43. Pettong T, Iamprasertkun P, Krittayavathananon A, Suktha P, Sirisinudomkit P, Seubsai A, Chareonpanich M, Kongkachuichay P, Limtrakul J, Sawangphruk M (2016) High-performance asymmetric supercapacitors of MnCo2O4 nanofibers and N-doped reduced graphene oxide aerogel. ACS Appl Mater Interfaces 8(49):34045–34053

    CAS  Google Scholar 

  44. Shah LR, Ali B, Zhu H, Wang WG, Song YQ, Zhang HW, Shah SI, Xiao JQ (2009) Detailed study on the role of oxygen vacancies in structural, magnetic and transport behavior of magnetic insulator: Co–CeO2. J Phys: Condens Matter 21:486004

    Google Scholar 

  45. Kumar M, Yun J-H, Bhatt V, Singh B, Kim J, Kim J-S, Kim BS, Lee CY (2018) Role of Ce3+ valence state and surface oxygen vacancies on enhanced electrochemical performance of single step solvothermally synthesized CeO2 nanoparticles. Electrochimica Acta 284:709–720

    CAS  Google Scholar 

  46. Peck MA, Langell MA (2012) Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem Mater 24:4483–4490

    CAS  Google Scholar 

  47. Gawali SR, Dubal DP, Deonikar VG, Patil SS, Patil SD, Gomez-Romero P, Patil DR, Pant J (2016) Asymmetric supercapacitor based on nanostructured Ce-doped NiO (Ce:NiO) as positive and reduced graphene oxide (rGO) as negative electrode. ChemistrySelect 1:3471–3478

    CAS  Google Scholar 

  48. Xia H, Li J, Ma L, Liu Q, Wang J (2018) Electrospun porous CuFe2O4 nanotubes on nickel foam for nonenzymatic voltammetric determination of glucose and hydrogen peroxide. J Alloy Compd 739:764–770

    CAS  Google Scholar 

  49. Jang J, Chung S, Kang H, Subramanian V (2016) p-type CuO and Cu2O transistors derived from a sol-gel copper (II) acetate monohydrate precursor. Thin Solid Films 600:157–161

    CAS  Google Scholar 

  50. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    CAS  Google Scholar 

  51. Li J, Le D-B, Ferguson PP, Dahn JR (2010) Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries. Electrochimica Acta 55:2991–2995

    CAS  Google Scholar 

  52. Dezfuli AS, Ganjali MR, Naderi HR, Norouzi P (2015) A high performance supercapacitor based on a ceria/graphene nanocomposite synthesized by a facile sonochemical method. RSC Adv 5:46050–46058

    CAS  Google Scholar 

  53. Zhang K, Mao L, Zhang LL, Chan HSO, Zhao XS, Wu JS (2011) Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. J Mater Chem 21:7302–7307

    CAS  Google Scholar 

  54. Saravanan T, Shanmugam M, Anandan P, Azhagurajan M, Pazhanivel K, Arivanandhan M, Hayakawad Y, Jayavel R (2015) Facile synthesis of graphene-CeO2 nanocomposites with enhanced electrochemical properties for Supercapacitors. Dalton Trans 44:9901–9908

    CAS  Google Scholar 

  55. Zhang H, Jiangna G, Tong J, Yongfeng H, Guan B, Bin H, Zhao J, Wang C (2016) Hierarchical porous MnO2/CeO2 with high performance for supercapacitor electrodes. Chem Eng J 286:139–149

    CAS  Google Scholar 

  56. Maiti S, Pramanik A, Mahanty S (2014) Extraordinarily high pseudocapacitance of metal organic framework derived nanostructured cerium oxide. Chem Commun 50:11717–11720

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Doctoral Scientific Research Foundation of Inner Mongolia University for Nationalities (Project No: BS456), and the Scientific Research Program of Inner Mongolia University for Nationalities (Project No: NMDYB19040, NMDYB19044, NMDYB19045). This work was financially supported by the National Natural Science Foundation of China (21961024, 21961025), Inner Mongolia Natural Science Foundation (2018JQ05). This work was financially supported by Incentive Funding from Nano Innovation Institute (NII) of Inner Mongolia University for Nationalities (IMUN), Inner Mongolia Autonomous Region Funding Project for Science & Technology Achievement Transformation (CGZH2018156), Inner Mongolia Autonomous Region Incentive Funding Guided Project for Science & Technology Innovation (2016), and Tongliao Funding Project for Application Technology Research & Development (2017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quanli Hu or Jinghai Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Yue, B., Shao, H. et al. Facile syntheses of cerium-based CeMO3 (M = Co, Ni, Cu) perovskite nanomaterials for high-performance supercapacitor electrodes. J Mater Sci 55, 8421–8434 (2020). https://doi.org/10.1007/s10853-020-04362-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04362-7

Navigation