Abstract
Phase changing materials (PCM) release or absorb heat in high quantity when there is a variation in phase. PCMs show good energy storage density, restricted operating temperatures and hence find application in various systems like heat pumps, solar power plants, electronic devices, thermal energy storage (TES) systems. Though it has extensive usage in such a diverse range of systems, PCMs have some limitations like poor thermal conductivity, susceptibility to leakage during phase transformations. To overcome these shortcomings, phase changing composites (PCCs) were fabricated. PCCs are an amalgamation of filler material with PCMs to form a composite with those anticipated or desired properties. There are multiple factors like porosity, sealing performance, leaking holding capacity, shape stability, thermal conductivity that should be taken into consideration/account while fabricating PCCs. Having considered such factors, graphene, which has high thermal conductivity (2000–4000 W/m K) and high specific surface area (~ 2630 m2 g−1), acts as a suitable candidate for synthesizing an effective and efficient PCC. In its aerogel form, it is used as a conductive filler or form-stabilizer, to improve the thermal conductivity (~ 5.89 W/m K) and heat transfer of PCMs like reduced graphene oxide. Graphene aerogels, thus, are used in PCM as latent heat storage (LHS) for thermal energy storage systems. Many of the researchers have based their work focus on graphene aerogels in PCMs, significant roles of such PCCs, their advantages and disadvantages; this paper is an effort to elucidate those and provide further insight into TES systems in which LHS is explicitly used in PCMs and their practical aspect.
This is a preview of subscription content, access via your institution.



















References
- 1
Adib RENR, Folkecenter M, Development Bank A et al (2018) Report renewable energy
- 2
Breeze P (2018) An introduction to energy storage technologies. Power Syst Energy Storage Technol. https://doi.org/10.1016/b978-0-12-812902-9.00001-8
- 3
Lead-Acid Battery Market (2013-2023). https://www.psmarketresearch.com/market-analysis/lead-acid-battery-market. Accessed 30 Dec 2019
- 4
Dinçer İ, Rosen MA (2010) Thermal energy storage. Wiley, Chichester
- 5
Aneke M, Wang M (2016) Energy storage technologies and real life applications—a state of the art review. Appl Energy 179:350–377. https://doi.org/10.1016/j.apenergy.2016.06.097
- 6
Mahlia TMI, Saktisahdan TJ, Jannifar A et al (2014) A review of available methods and development on energy storage; technology update. Renew Sustain Energy Rev 33:532–545. https://doi.org/10.1016/j.rser.2014.01.068
- 7
Kalaiselvam S, Parameshwaran R (2014) Sustainable thermal energy storage. Therm Energy Storage Technol Sustain. https://doi.org/10.1016/b978-0-12-417291-3.00009-8
- 8
Li P-W, Chan CL (2017) Introduction. Therm Energy Storage Anal Des. https://doi.org/10.1016/b978-0-12-805344-7.00001-8
- 9
Qu Y, Li Q, Cai L et al (2018) Thermal camouflage based on the phase-changing material GST. Light Sci Appl 7:3–4. https://doi.org/10.1038/s41377-018-0038-5
- 10
Wang X, Li G, Hong G et al (2017) Graphene aerogel templated fabrication of phase change microspheres as thermal buffers in microelectronic devices. ACS Appl Mater Interfaces 9:41323–41331. https://doi.org/10.1021/acsami.7b13969
- 11
Plytaria MT, Bellos E, Tzivanidis C, Antonopoulos KA (2019) Numerical simulation of a solar cooling system with and without phase change materials in radiant walls of a building. Energy Convers Manag 188:40–53. https://doi.org/10.1016/j.enconman.2019.03.042
- 12
Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127–3171. https://doi.org/10.1039/c3cs00009e
- 13
Ye Q, Tao P, Chang C et al (2019) Form-stable solar thermal heat packs prepared by impregnating phase-changing materials within carbon-coated copper foams. ACS Appl Mater Interfaces 11:3417–3427. https://doi.org/10.1021/acsami.8b17492
- 14
Qiu L, Niu RP, Tan Z (2012) Experimental research of PCMs-TH29 using on building energy storage. Adv Mater Res 569:202–206. https://doi.org/10.4028/www.scientific.net/amr.569.202
- 15
Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13:318–345. https://doi.org/10.1016/j.rser.2007.10.005
- 16
Lee D, Lee S-G, Kim S (2017) Composite phase-change material mold for cost-effective production of free-form concrete panels. J Constr Eng Manag 143:04017012. https://doi.org/10.1061/(asce)co.1943-7862.0001300
- 17
Shin Y, Il Yoo D, Son K (2005) Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules. J Appl Polym Sci 96:2005–2010. https://doi.org/10.1002/app.21438
- 18
Arjun Dakuri, Hayavadana J (2014) Thermal energy storage materials (PCMs) for textile applications. J Text Appar Technol Manag 2014:561–565
- 19
Onofrei E, Rocha AM, Catarino A (2010) Textiles integrating pcms—a review. Technology Lx:109–110
- 20
Revaiah RG, Kotresh TM, Kandasubramanian B (2019) Technical textiles for military applications. J Text Inst. https://doi.org/10.1080/00405000.2019.1627987
- 21
Prajapati DG, Kandasubramanian B (2019) A review on polymeric-based phase change material for thermo-regulating fabric application. Polym Rev. https://doi.org/10.1080/15583724.2019.1677709
- 22
Saini S, Kandasubramanian B (2018) Engineered smart textiles and Janus microparticles for diverse functional industrial applications. Polym Plast Technol Eng. https://doi.org/10.1080/03602559.2018.1466177
- 23
Gupta P, Kandasubramanian B (2017) Directional fluid gating by Janus membranes with heterogeneous wetting properties for selective oil–water separation. ACS Appl Mater Interfaces 9:19102–19113. https://doi.org/10.1021/acsami.7b03313
- 24
Gore PM, Kandasubramanian B (2018) Heterogeneous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil–water separation. J Mater Chem A 6:7457–7479. https://doi.org/10.1039/C7TA11260B
- 25
Gore PM, Naebe M, Wang X, Kandasubramanian B (2019) Progress in silk materials for integrated water treatments: fabrication, modification and applications. Chem Eng J 374:437–470. https://doi.org/10.1016/j.cej.2019.05.163
- 26
Gore PM, Dhanshetty M, Balasubramanian K (2016) Bionic creation of nano-engineered Janus fabric for selective oil/organic solvent absorption. RSC Adv 6:111250–111260. https://doi.org/10.1039/C6RA24106A
- 27
Bal LM, Satya S, Naik SN (2010) Solar dryer with thermal energy storage systems for drying agricultural food products: a review. Renew Sustain Energy Rev 14:2298–2314. https://doi.org/10.1016/j.rser.2010.04.014
- 28
Sarbu I, Sebarchievici C (2018) A comprehensive review of thermal energy storage. Sustainability 10:191. https://doi.org/10.3390/su10010191
- 29
Chen H, Cong TN, Yang W et al (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312
- 30
Ward PA, Teprovich JA, Liu Y et al (2018) High temperature thermal energy storage in the CaAl2 system. J Alloys Compd 735:2611–2615. https://doi.org/10.1016/j.jallcom.2017.10.191
- 31
Herrmann U, Kelly B, Price H (2004) Two-tank molten salt storage for parabolic trough solar power plants. Energy 29:883–893. https://doi.org/10.1016/S0360-5442(03)00193-2
- 32
Robinson A (2018) Ultra-high temperature thermal energy storage. Part 2: engineering and operation. J Energy Storage 18:333–339. https://doi.org/10.1016/j.est.2018.03.013
- 33
Robinson A (2017) Ultra-high temperature thermal energy storage. Part 1: concepts. J Energy Storage 13:277–286. https://doi.org/10.1016/j.est.2017.07.020
- 34
Elliott DE, Stephens T, Barabas MF et al (1977) High temperature thermal energy storage. Energy 2(1):59–69. https://doi.org/10.1016/0360-5442(77)90022-6
- 35
Jordan S (2008) S104 Book 3 energy and light. In: Energy and light. Open University, p 179
- 36
(2013) Specific heat capacity-Science and engineering encyclopedia. diracdelta.co.uk. https://web.archive.org/web/20070804192935/http://www.diracdelta.co.uk/science/source/s/p/specific%20heat%20capacity/source.html. Accessed 30 Dec 2019
- 37
Ge H, Li H, Mei S, Liu J (2013) Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area. Renew Sustain Energy Rev 21:331–346. https://doi.org/10.1016/j.rser.2013.01.008
- 38
(2018) Ethanol-Thermophysical properties, The Engineering ToolBox. https://www.engineeringtoolbox.com/ethanol-ethyl-alcohol-properties-C2H6O-d_2027.html. Accessed 30 Dec 2019
- 39
Fernandez AI, Martínez M, Segarra M et al (2010) Selection of materials with potential in sensible thermal energy storage. Sol Energy Mater Sol Cells 94:1723–1729. https://doi.org/10.1016/j.solmat.2010.05.035
- 40
Shukla A (2015) Latent heat storage through phase change materials. Resonance 20:532–541. https://doi.org/10.1007/s12045-015-0212-5
- 41
Simpson RE, Fons P, Kolobov AV et al (2011) Interfacial phase-change memory. Nat Nanotechnol 6:501–505. https://doi.org/10.1038/nnano.2011.96
- 42
Kousksou T, Bruel P, Jamil A et al (2014) Energy storage: applications and challenges. Sol Energy Mater Sol Cells 120:59–80. https://doi.org/10.1016/j.solmat.2013.08.015
- 43
Bales C, Jähnig D, Kerskes H, Zondag H (2008) Store models for chemical and sorption storage units. Report B5—IEA SHC task 32
- 44
Hauer A (2007) Sorption theory for thermal energy storage. In: Paksoy HÖ (ed) Thermal energy storage for sustainable energy consumption. Springer, Dordrecht, pp 393–408
- 45
Weber R, Dorer V (2008) Long-term heat storage with NaOH. Vacuum 82:708–716. https://doi.org/10.1016/j.vacuum.2007.10.018
- 46
Fujii I, Tsuchiya K, Higano M, Yamada J (1985) Studies of an energy storage system by use of the reversible chemical reaction: CaO + H2O ⇌ Ca(OH)2. Sol Energy 34:367–377. https://doi.org/10.1016/0038-092X(85)90049-0
- 47
Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123. https://doi.org/10.1016/j.pmatsci.2014.03.005
- 48
Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manag 45:1597–1615. https://doi.org/10.1016/j.enconman.2003.09.015
- 49
Tyagi VV, Buddhi D (2007) PCM thermal storage in buildings: a state of art. Renew Sustain Energy Rev 11:1146–1166. https://doi.org/10.1016/j.rser.2005.10.002
- 50
Prajapati DG, Kandasubramanian B (2019) Biodegradable polymeric solid framework-based organic phase-change materials for thermal energy storage. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.9b01693
- 51
Liu M, Saman W, Bruno F (2012) Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sustain Energy Rev 16:2118–2132. https://doi.org/10.1016/j.rser.2012.01.020
- 52
Zhao J, Pan R, Sun R et al (2019) High-conductivity reduced-graphene-oxide/copper aerogel for energy storage. Nano Energy 60:760–767. https://doi.org/10.1016/j.nanoen.2019.04.023
- 53
Ji Y, Wen H, Zhang K et al (2016) Enhancement of thermal conductivity of phase change materials by 3D graphene @ Al2O3 foams. In: 2016 17th international conference on electronic packaging technology, pp 313–317
- 54
Zalba B, Marín JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283. https://doi.org/10.1016/S1359-4311(02)00192-8
- 55
Tang YR, Gao DL, Guo YF et al (2011) Supercooling and phase separation of inorganic salt hydrates as PCMs. Appl Mech Mater 71–78:2602–2605. https://doi.org/10.4028/www.scientific.net/amm.71-78.2602
- 56
Ryu HW, Woo SW, Shin BC, Kim SD (1992) Prevention of supercooling and stabilization of inorganic salt hydrates as latent heat storage materials. Sol Energy Mater Sol Cells 27:161–172. https://doi.org/10.1016/0927-0248(92)90117-8
- 57
Biswas DR (1977) Thermal energy storage using sodium sulfate decahydrate and water. Sol Energy 19:99–100. https://doi.org/10.1016/0038-092X(77)90094-9
- 58
Lane GA (1992) Phase change materials for energy storage nucleation to prevent supercooling. Sol Energy Mater Sol Cells 27:135–160
- 59
Sharma RK, Ganesan P, Tyagi VV et al (2015) Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers Manag 95:193–228. https://doi.org/10.1016/j.enconman.2015.01.084
- 60
Paris J, Falardeau M, Villeneuve C (1993) Thermal storage by latent heat: a viable option for energy conservation in buildings. Energy Sources. https://doi.org/10.1080/00908319308909014
- 61
Parks GS, West TJ, Naylor BF et al (1946) Thermal data on organic compounds. XXIII. Modern combustion data for fourteen hydrocarbons and five polyhydroxy alcohols. J Am Chem Soc. https://doi.org/10.1021/ja01216a028
- 62
Parks GS, Moore GE, Renquist ML et al (1949) Thermal data on organic compounds. XXV. Some heat capacity, entropy and free energy data for nine hydrocarbons of high molecular weight. J Am Chem Soc. https://doi.org/10.1021/ja01178a034
- 63
Lane GA (1983) Solar heat storage: latent heat materials. CRC Press, Michigan, p 0849365856
- 64
Fukai J, Hamada Y, Morozumi Y, Miyatake O (2002) Effect of carbon-fiber brushes on conductive heat transfer in phase change materials. Int J Heat Mass Transf 45:4781–4792. https://doi.org/10.1016/S0017-9310(02)00179-5
- 65
Kaygusuz K, Sari A (2005) Thermal energy storage system using a technical grade paraffin wax as latent heat energy storage material. Energy Sources 27:1535–1546. https://doi.org/10.1080/009083190914015
- 66
Ventolà L, Cuevas-Diarte MA, Calvet T et al (2005) Molecular alloys as phase change materials (MAPCM) for energy storage and thermal protection at temperatures from 70 to 85 °C. J Phys Chem Solids 66:1668–1674. https://doi.org/10.1016/j.jpcs.2005.06.001
- 67
Ventolà L, Calvet T, Cuevas-Diarte MÁ et al (2002) From concept to application. A new phase change material for thermal protection at − 11 °C. Mater Res Innov 6:284–290. https://doi.org/10.1007/s10019-002-0213-3
- 68
Zhang Z, Fang X (2006) Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Convers Manag 47:303–310. https://doi.org/10.1016/j.enconman.2005.03.004
- 69
Zhang Z, Zhang N, Peng J et al (2012) Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energy 91:426–431. https://doi.org/10.1016/j.apenergy.2011.10.014
- 70
Sarier N, Onder E, Ozay S, Ozkilic Y (2011) Preparation of phase change material-montmorillonite composites suitable for thermal energy storage. Thermochim Acta 524:39–46. https://doi.org/10.1016/j.tca.2011.06.009
- 71
Ma T, Li L, Wang Q, Guo C (2019) High-performance flame retarded paraffin/epoxy resin form-stable phase change material. J Mater Sci 54:875–885. https://doi.org/10.1007/s10853-018-2846-7
- 72
Horpan MS, Şahan N, Paksoy H et al (2019) Direct impregnation and characterization of Colemanite/Ulexite–Mg(OH)2 paraffin based form-stable phase change composites. Sol Energy Mater Sol Cells 195:346–352. https://doi.org/10.1016/j.solmat.2019.03.018
- 73
Pielichowski K, Flejtuch K (2003) Differential scanning calorimetry study of blends of poly(ethylene glycol) with selected fatty acids. Macromol Mater Eng 288:259–264. https://doi.org/10.1002/mame.200390022
- 74
Wen R, Zhang X, Huang Y et al (2017) Preparation and properties of fatty acid eutectics/expanded perlite and expanded vermiculite shape-stabilized materials for thermal energy storage in buildings. Energy Build 139:197–204. https://doi.org/10.1016/j.enbuild.2017.01.025
- 75
Kahwaji S, Johnson MB, Kheirabadi AC et al (2017) Fatty acids and related phase change materials for reliable thermal energy storage at moderate temperatures. Sol Energy Mater Sol Cells 167:109–120. https://doi.org/10.1016/j.solmat.2017.03.038
- 76
Solé A, Neumann H, Niedermaier S et al (2014) Stability of sugar alcohols as PCM for thermal energy storage. Sol Energy Mater Sol Cells 126:125–134. https://doi.org/10.1016/j.solmat.2014.03.020
- 77
del Barrio EP, Godin A, Duquesne M et al (2017) Characterization of different sugar alcohols as phase change materials for thermal energy storage applications. Sol Energy Mater Sol Cells 159:560–569. https://doi.org/10.1016/j.solmat.2016.10.009
- 78
Gunasekara SN, Pan R, Chiu JN, Martin V (2016) Polyols as phase change materials for surplus thermal energy storage. Appl Energy 162:1439–1452. https://doi.org/10.1016/j.apenergy.2015.03.064
- 79
Huang X, Lin Y, Alva G, Fang G (2017) Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage. Sol Energy Mater Sol Cells 170:68–76. https://doi.org/10.1016/j.solmat.2017.05.059
- 80
Kakiuchi H, Yamazaki M, Yabe M et al (1998) A Study of erythritol as phase change material. IEA Annex 10 – PCMs and Chemical Reactions for Thermal Energy Storage, 2nd Workshop, Sofia, Bulgaria, 11–13 November 1998
- 81
Barone G, Della Gatta G, Ferro D, Piacente V (1990) Enthalpies and entropies of sublimation, vaporization and fusion of nine polyhydric alcohols. J Chem Soc Faraday Trans 86:75–79. https://doi.org/10.1039/FT9908600075
- 82
Talja RA, Roos YH (2001) Phase and state transition effects on dielectric, mechanical, and thermal properties of polyols. Thermochim Acta 380:109–121. https://doi.org/10.1016/S0040-6031(01)00664-5
- 83
Zeng JL, Cao Z, Yang DW et al (2009) Phase diagram of palmitic acid-tetradecanol mixtures obtained by DSC experiments. J Therm Anal Calorim 95:501–505. https://doi.org/10.1007/s10973-008-9274-x
- 84
Mrmak N (2014) Graphene properties-Graphene-Battery.net. http://www.graphene-battery.net/graphene-properties.htm. Accessed 30 Dec 2019
- 85
Zhong Y, Zhou M, Huang F et al (2013) Effect of graphene aerogel on thermal behavior of phase change materials for thermal management. Sol Energy Mater Sol Cells 113:195–200. https://doi.org/10.1016/j.solmat.2013.01.046
- 86
Ye S, Zhang Q, Hu D, Feng J (2015) Core–shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage. J Mater Chem A 3:4018–4025. https://doi.org/10.1039/c4ta05448b
- 87
Sheng K, Sun Y, Li C et al (2012) Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci Rep 2:247. https://doi.org/10.1038/srep00247
- 88
Chen K, Chen L, Chen Y et al (2012) Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application. J Mater Chem 22:20968. https://doi.org/10.1039/c2jm34816k
- 89
Pham HD, Pham VH, Cuong TV et al (2011) Synthesis of the chemically converted graphene xerogel with superior electrical conductivity. Chem Commun 47:9672. https://doi.org/10.1039/c1cc13329b
- 90
Worsley MA, Pauzauskie PJ, Olson TY et al (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132:14067–14069. https://doi.org/10.1021/ja1072299
- 91
Yang J, Qi GQ, Bao RY et al (2018) Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials. Energy Storage Mater 13:88–95. https://doi.org/10.1016/j.ensm.2017.12.028
- 92
Ji H, Sellan DP, Pettes MT et al (2014) Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ Sci 7:1185–1192. https://doi.org/10.1039/c3ee42573h
- 93
Xin G, Sun H, Scott SM et al (2014) Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage. ACS Appl Mater Interfaces. https://doi.org/10.1021/am503619a
- 94
Jain V, Kandasubramanian B (2020) Functionalized graphene materials for hydrogen storage. J Mater Sci 55:1865–1903. https://doi.org/10.1007/s10853-019-04150-y
- 95
Shi JN, Der Ger M, Liu YM et al (2013) Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon N Y. https://doi.org/10.1016/j.carbon.2012.08.068
- 96
Xu T, Li Y, Chen J et al (2018) Improving thermal management of electronic apparatus with paraffin (PA)/expanded graphite (EG)/graphene (GN) composite material. Appl Therm Eng 140:13–22. https://doi.org/10.1016/j.applthermaleng.2018.05.060
- 97
Bin YuC, Yang SH, Pak SY et al (2018) Graphene embedded form stable phase change materials for drawing the thermo-electric energy harvesting. Energy Convers Manag 169:88–96. https://doi.org/10.1016/j.enconman.2018.05.001
- 98
Bhalara PD, Balasubramanian K, Banerjee BS (2015) Spider–web textured electrospun composite of graphene for sorption of Hg(II) ions. Mater Focus 4:154–163. https://doi.org/10.1166/mat.2015.1232
- 99
Thakur K, Kandasubramanian B (2019) Graphene and graphene oxide-based composites for removal of organic pollutants: a review. J Chem Eng Data 64:833–867. https://doi.org/10.1021/acs.jced.8b01057
- 100
Joshi A, Bajaj A, Singh R et al (2013) Graphene nanoribbon–PVA composite as EMI shielding material in the X band. Nanotechnology 24:455705. https://doi.org/10.1088/0957-4484/24/45/455705
- 101
Yadav R, Subhash A, Chemmenchery N, Kandasubramanian B (2018) Graphene and graphene oxide for fuel cell technology. Ind Eng Chem Res 57:9333–9350. https://doi.org/10.1021/acs.iecr.8b02326
- 102
Sahoo BN, Kandasubramanian B (2014) Photoluminescent carbon soot particles derived from controlled combustion of camphor for superhydrophobic applications. RSC Adv 4:11331–11342. https://doi.org/10.1039/c3ra46193a
- 103
Shang Y, Zhang D (2016) Preparation and thermal properties of graphene oxide–microencapsulated phase change materials. Nanoscale Microscale Thermophys Eng 20:147–157. https://doi.org/10.1080/15567265.2016.1236865
- 104
Yang J, Tang LS, Bao RY et al (2018) Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability. Sol Energy Mater Sol Cells 174:56–64. https://doi.org/10.1016/j.solmat.2017.08.025
- 105
Qi GQ, Yang J, Bao RY et al (2015) Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage. Carbon N Y 88:196–205. https://doi.org/10.1016/j.carbon.2015.03.009
- 106
Palaniappan N, Cole IS, Kuznetsov AE et al (2019) Experimental and computational studies of a graphene oxide barrier layer covalently functionalized with amino acids on Mg AZ13 alloy in salt medium. RSC Adv 9:32441–32447. https://doi.org/10.1039/C9RA06549K
- 107
Palaniappan N, Cole IS, Caballero-Briones F et al (2018) Praseodymium-decorated graphene oxide as a corrosion inhibitor in acidic media for the magnesium AZ31 alloy. RSC Adv 8:34275–34286. https://doi.org/10.1039/C8RA05118F
- 108
Kant K, Shukla A, Sharma A, Henry Biwole P (2017) Heat transfer study of phase change materials with graphene nano particle for thermal energy storage. Sol Energy 146:453–463. https://doi.org/10.1016/j.solener.2017.03.013
- 109
Jing G, Dehong X, Li W et al (2018) Low concentration graphene nanoplatelets for shape stabilization and thermal transfer reinforcement of Mannitol: a phase change material for a medium-temperature thermal energy system. Mater Res Express. https://doi.org/10.1088/2053-1591/aaaf59
- 110
Qi G, Yang J, Bao R et al (2017) Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res 10:802–813. https://doi.org/10.1007/s12274-016-1333-1
- 111
Kim J, Ou E, Kholmanov I et al (2015) Continuous carbon nanotube–ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano 9:11699–11707. https://doi.org/10.1021/acsnano.5b02917
- 112
Liu K-K, Jin B, Meng L-Y (2018) Glucose/graphene-based aerogels for gas adsorption and electric double layer capacitors. Polymers 11:40. https://doi.org/10.3390/polym11010040
- 113
Liu L, Zheng K, Yan Y et al (2018) Graphene aerogels enhanced phase change materials prepared by one-pot method with high thermal conductivity and large latent energy storage. Sol Energy Mater Sol Cells 185:487–493. https://doi.org/10.1016/j.solmat.2018.06.005
- 114
Qu Y, Lu C, Su Y et al (2018) Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage. Carbon N Y 127:77–84. https://doi.org/10.1016/j.carbon.2017.10.088
- 115
(2013) Ultra-light aerogel produced at a Zhejiang University Lab-Press releases-Zhejiang University
- 116
Hu H, Zhao Z, Wan W et al (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25:2219–2223. https://doi.org/10.1002/adma.201204530
- 117
McNaught AD, Wilkinson A (2006) Aerogel. In: IUPAC Compendium of Chemical Terminology. IUPAC, Research Triangle Park
- 118
Shang J-J, Yang Q-S, Liu X (2017) New coarse-grained model and its implementation in simulations of graphene assemblies. J Chem Theory Comput 13:3706–3714. https://doi.org/10.1021/acs.jctc.7b00051
- 119
Cheng Y, Zhou S, Hu P et al (2017) Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction. Sci Rep 7:1439. https://doi.org/10.1038/s41598-017-01601-x
- 120
Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano. https://doi.org/10.1021/nn1006368
- 121
Li Y, Chen J, Huang L et al (2014) Highly compressible macroporous graphene monoliths via an improved hydrothermal process. Adv Mater 26:4789–4793. https://doi.org/10.1002/adma.201400657
- 122
Yang J, Qi GQ, Liu Y et al (2016) Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon N Y 100:693–702. https://doi.org/10.1016/j.carbon.2016.01.063
- 123
Tian B, Yang W, He F et al (2017) Paraffin/carbon aerogel phase change materials with high enthalpy and thermal conductivity. Fuller Nanotub Carbon Nanostructures 25:512–518. https://doi.org/10.1080/1536383X.2017.1347638
- 124
Tang LS, Yang J, Bao RY et al (2017) Polyethylene glycol/graphene oxide aerogel shape-stabilized phase change materials for photo-to-thermal energy conversion and storage via tuning the oxidation degree of graphene oxide. Energy Convers Manag 146:253–264. https://doi.org/10.1016/j.enconman.2017.05.037
- 125
Xiang J, Drzal LT (2011) Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material. Sol Energy Mater Sol Cells. https://doi.org/10.1016/j.solmat.2011.01.048
- 126
Xu Y, Fleischer AS, Feng G (2017) Reinforcement and shape stabilization of phase-change material via graphene oxide aerogel. Carbon N Y 114:334–346. https://doi.org/10.1016/j.carbon.2016.11.069
- 127
Fang X, Hao P, Song B et al (2017) Form-stable phase change material embedded with chitosan-derived carbon aerogel. Mater Lett 195:79–81. https://doi.org/10.1016/j.matlet.2017.02.075
- 128
McNaught AD, Wilkinson A (2006) Foam. In: IUPAC compendium of chemical terminology. IUPAC, Research Triangle Park
- 129
Paronyan TM, Thapa AK, Sherehiy A et al (2017) Incommensurate graphene foam as a high capacity lithium intercalation anode. Sci Rep 7:1–11. https://doi.org/10.1038/srep39944
- 130
Pettes MT, Ji H, Ruoff RS, Shi L (2012) Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite. Nano Lett 12:2959–2964. https://doi.org/10.1021/nl300662q
- 131
Shang Y, Zhang D (2017) Preparation and characterization of three-dimensional graphene network encapsulating 1-hexadecanol composite. Appl Therm Eng 111:353–357. https://doi.org/10.1016/j.applthermaleng.2016.09.129
- 132
Abuşka M, Şevik S, Kayapunar A (2019) A comparative investigation of the effect of honeycomb core on the latent heat storage with PCM in solar air heater. Appl Therm Eng 148:684–693. https://doi.org/10.1016/j.applthermaleng.2018.11.056
- 133
Mu B, Li M (2019) Synthesis of novel form-stable composite phase change materials with modified graphene aerogel for solar energy conversion and storage. Sol Energy Mater Sol Cells 191:466–475. https://doi.org/10.1016/j.solmat.2018.11.025
- 134
Xue F, Lu Y, Qi XD et al (2019) Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities. Chem Eng J 365:20–29. https://doi.org/10.1016/j.cej.2019.02.023
- 135
Wang Z, Shen X, Akbari Garakani M et al (2015) Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. ACS Appl Mater Interfaces 7:5538–5549. https://doi.org/10.1021/acsami.5b00146
- 136
Fan Z, Gong F, Nguyen ST, Duong HM (2015) Advanced multifunctional graphene aerogel—poly (methyl methacrylate) composites: experiments and modeling. Carbon N Y 81:396–404. https://doi.org/10.1016/j.carbon.2014.09.072
- 137
Balasubramanian K (2012) Reinforcement of poly ether sulphones (PES) with exfoliated graphene oxide for aerospace applications. In: International conference on structural nano composites (NANOSTRUC 2012). Cranfield University, Bedfordshire
- 138
Salimian S, Zadhoush A (2019) Water-glass based silica aerogel: unique nanostructured filler for epoxy nanocomposites. J Porous Mater 26:1755–1765. https://doi.org/10.1007/s10934-019-00757-3
- 139
Chen WJ, Shen MY, Li YL et al (2010) Thermal and mechanical properties of carbon aerogels for nanocomposites. In: 7th Asian-Australasian conference on composite materials. Taipei, pp 1234–1238
- 140
He J, Li X, Su D et al (2016) Ultra-low thermal conductivity and high strength of aerogels/fibrous ceramic composites. J Eur Ceram Soc 36:1487–1493. https://doi.org/10.1016/j.jeurceramsoc.2015.11.021
Acknowledgement
The authors are thankful to Dr. C. P. Ramanarayanan, Vice-Chancellor of Defence Institute of Advanced Technology (DU), Pune, for the motivation and support. The authors would like to thank Mr. Swaroop Gharde and Mr. Deepak Prajapati for technical discussion and support. The authors would also like to acknowledge Mr. Prakash Gore and Mr. Ravi Prakash Magisetty for their help with technical editing. The authors are also thankful to the editor and anonymous reviewers for improving the quality of the revised manuscript by their valuable comments and suggestions.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kashyap, S., Kabra, S. & Kandasubramanian, B. Graphene aerogel-based phase changing composites for thermal energy storage systems. J Mater Sci 55, 4127–4156 (2020). https://doi.org/10.1007/s10853-019-04325-7
Received:
Accepted:
Published:
Issue Date: