Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Graphene aerogel-based phase changing composites for thermal energy storage systems

Abstract

Phase changing materials (PCM) release or absorb heat in high quantity when there is a variation in phase. PCMs show good energy storage density, restricted operating temperatures and hence find application in various systems like heat pumps, solar power plants, electronic devices, thermal energy storage (TES) systems. Though it has extensive usage in such a diverse range of systems, PCMs have some limitations like poor thermal conductivity, susceptibility to leakage during phase transformations. To overcome these shortcomings, phase changing composites (PCCs) were fabricated. PCCs are an amalgamation of filler material with PCMs to form a composite with those anticipated or desired properties. There are multiple factors like porosity, sealing performance, leaking holding capacity, shape stability, thermal conductivity that should be taken into consideration/account while fabricating PCCs. Having considered such factors, graphene, which has high thermal conductivity (2000–4000 W/m K) and high specific surface area (~ 2630 m2 g−1), acts as a suitable candidate for synthesizing an effective and efficient PCC. In its aerogel form, it is used as a conductive filler or form-stabilizer, to improve the thermal conductivity (~ 5.89 W/m K) and heat transfer of PCMs like reduced graphene oxide. Graphene aerogels, thus, are used in PCM as latent heat storage (LHS) for thermal energy storage systems. Many of the researchers have based their work focus on graphene aerogels in PCMs, significant roles of such PCCs, their advantages and disadvantages; this paper is an effort to elucidate those and provide further insight into TES systems in which LHS is explicitly used in PCMs and their practical aspect.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

References

  1. 1

    Adib RENR, Folkecenter M, Development Bank A et al (2018) Report renewable energy

  2. 2

    Breeze P (2018) An introduction to energy storage technologies. Power Syst Energy Storage Technol. https://doi.org/10.1016/b978-0-12-812902-9.00001-8

  3. 3

    Lead-Acid Battery Market (2013-2023). https://www.psmarketresearch.com/market-analysis/lead-acid-battery-market. Accessed 30 Dec 2019

  4. 4

    Dinçer İ, Rosen MA (2010) Thermal energy storage. Wiley, Chichester

  5. 5

    Aneke M, Wang M (2016) Energy storage technologies and real life applications—a state of the art review. Appl Energy 179:350–377. https://doi.org/10.1016/j.apenergy.2016.06.097

  6. 6

    Mahlia TMI, Saktisahdan TJ, Jannifar A et al (2014) A review of available methods and development on energy storage; technology update. Renew Sustain Energy Rev 33:532–545. https://doi.org/10.1016/j.rser.2014.01.068

  7. 7

    Kalaiselvam S, Parameshwaran R (2014) Sustainable thermal energy storage. Therm Energy Storage Technol Sustain. https://doi.org/10.1016/b978-0-12-417291-3.00009-8

  8. 8

    Li P-W, Chan CL (2017) Introduction. Therm Energy Storage Anal Des. https://doi.org/10.1016/b978-0-12-805344-7.00001-8

  9. 9

    Qu Y, Li Q, Cai L et al (2018) Thermal camouflage based on the phase-changing material GST. Light Sci Appl 7:3–4. https://doi.org/10.1038/s41377-018-0038-5

  10. 10

    Wang X, Li G, Hong G et al (2017) Graphene aerogel templated fabrication of phase change microspheres as thermal buffers in microelectronic devices. ACS Appl Mater Interfaces 9:41323–41331. https://doi.org/10.1021/acsami.7b13969

  11. 11

    Plytaria MT, Bellos E, Tzivanidis C, Antonopoulos KA (2019) Numerical simulation of a solar cooling system with and without phase change materials in radiant walls of a building. Energy Convers Manag 188:40–53. https://doi.org/10.1016/j.enconman.2019.03.042

  12. 12

    Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127–3171. https://doi.org/10.1039/c3cs00009e

  13. 13

    Ye Q, Tao P, Chang C et al (2019) Form-stable solar thermal heat packs prepared by impregnating phase-changing materials within carbon-coated copper foams. ACS Appl Mater Interfaces 11:3417–3427. https://doi.org/10.1021/acsami.8b17492

  14. 14

    Qiu L, Niu RP, Tan Z (2012) Experimental research of PCMs-TH29 using on building energy storage. Adv Mater Res 569:202–206. https://doi.org/10.4028/www.scientific.net/amr.569.202

  15. 15

    Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13:318–345. https://doi.org/10.1016/j.rser.2007.10.005

  16. 16

    Lee D, Lee S-G, Kim S (2017) Composite phase-change material mold for cost-effective production of free-form concrete panels. J Constr Eng Manag 143:04017012. https://doi.org/10.1061/(asce)co.1943-7862.0001300

  17. 17

    Shin Y, Il Yoo D, Son K (2005) Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules. J Appl Polym Sci 96:2005–2010. https://doi.org/10.1002/app.21438

  18. 18

    Arjun Dakuri, Hayavadana J (2014) Thermal energy storage materials (PCMs) for textile applications. J Text Appar Technol Manag 2014:561–565

  19. 19

    Onofrei E, Rocha AM, Catarino A (2010) Textiles integrating pcms—a review. Technology Lx:109–110

  20. 20

    Revaiah RG, Kotresh TM, Kandasubramanian B (2019) Technical textiles for military applications. J Text Inst. https://doi.org/10.1080/00405000.2019.1627987

  21. 21

    Prajapati DG, Kandasubramanian B (2019) A review on polymeric-based phase change material for thermo-regulating fabric application. Polym Rev. https://doi.org/10.1080/15583724.2019.1677709

  22. 22

    Saini S, Kandasubramanian B (2018) Engineered smart textiles and Janus microparticles for diverse functional industrial applications. Polym Plast Technol Eng. https://doi.org/10.1080/03602559.2018.1466177

  23. 23

    Gupta P, Kandasubramanian B (2017) Directional fluid gating by Janus membranes with heterogeneous wetting properties for selective oil–water separation. ACS Appl Mater Interfaces 9:19102–19113. https://doi.org/10.1021/acsami.7b03313

  24. 24

    Gore PM, Kandasubramanian B (2018) Heterogeneous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil–water separation. J Mater Chem A 6:7457–7479. https://doi.org/10.1039/C7TA11260B

  25. 25

    Gore PM, Naebe M, Wang X, Kandasubramanian B (2019) Progress in silk materials for integrated water treatments: fabrication, modification and applications. Chem Eng J 374:437–470. https://doi.org/10.1016/j.cej.2019.05.163

  26. 26

    Gore PM, Dhanshetty M, Balasubramanian K (2016) Bionic creation of nano-engineered Janus fabric for selective oil/organic solvent absorption. RSC Adv 6:111250–111260. https://doi.org/10.1039/C6RA24106A

  27. 27

    Bal LM, Satya S, Naik SN (2010) Solar dryer with thermal energy storage systems for drying agricultural food products: a review. Renew Sustain Energy Rev 14:2298–2314. https://doi.org/10.1016/j.rser.2010.04.014

  28. 28

    Sarbu I, Sebarchievici C (2018) A comprehensive review of thermal energy storage. Sustainability 10:191. https://doi.org/10.3390/su10010191

  29. 29

    Chen H, Cong TN, Yang W et al (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312

  30. 30

    Ward PA, Teprovich JA, Liu Y et al (2018) High temperature thermal energy storage in the CaAl2 system. J Alloys Compd 735:2611–2615. https://doi.org/10.1016/j.jallcom.2017.10.191

  31. 31

    Herrmann U, Kelly B, Price H (2004) Two-tank molten salt storage for parabolic trough solar power plants. Energy 29:883–893. https://doi.org/10.1016/S0360-5442(03)00193-2

  32. 32

    Robinson A (2018) Ultra-high temperature thermal energy storage. Part 2: engineering and operation. J Energy Storage 18:333–339. https://doi.org/10.1016/j.est.2018.03.013

  33. 33

    Robinson A (2017) Ultra-high temperature thermal energy storage. Part 1: concepts. J Energy Storage 13:277–286. https://doi.org/10.1016/j.est.2017.07.020

  34. 34

    Elliott DE, Stephens T, Barabas MF et al (1977) High temperature thermal energy storage. Energy 2(1):59–69. https://doi.org/10.1016/0360-5442(77)90022-6

  35. 35

    Jordan S (2008) S104 Book 3 energy and light. In: Energy and light. Open University, p 179

  36. 36

    (2013) Specific heat capacity-Science and engineering encyclopedia. diracdelta.co.uk. https://web.archive.org/web/20070804192935/http://www.diracdelta.co.uk/science/source/s/p/specific%20heat%20capacity/source.html. Accessed 30 Dec 2019

  37. 37

    Ge H, Li H, Mei S, Liu J (2013) Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area. Renew Sustain Energy Rev 21:331–346. https://doi.org/10.1016/j.rser.2013.01.008

  38. 38

    (2018) Ethanol-Thermophysical properties, The Engineering ToolBox. https://www.engineeringtoolbox.com/ethanol-ethyl-alcohol-properties-C2H6O-d_2027.html. Accessed 30 Dec 2019

  39. 39

    Fernandez AI, Martínez M, Segarra M et al (2010) Selection of materials with potential in sensible thermal energy storage. Sol Energy Mater Sol Cells 94:1723–1729. https://doi.org/10.1016/j.solmat.2010.05.035

  40. 40

    Shukla A (2015) Latent heat storage through phase change materials. Resonance 20:532–541. https://doi.org/10.1007/s12045-015-0212-5

  41. 41

    Simpson RE, Fons P, Kolobov AV et al (2011) Interfacial phase-change memory. Nat Nanotechnol 6:501–505. https://doi.org/10.1038/nnano.2011.96

  42. 42

    Kousksou T, Bruel P, Jamil A et al (2014) Energy storage: applications and challenges. Sol Energy Mater Sol Cells 120:59–80. https://doi.org/10.1016/j.solmat.2013.08.015

  43. 43

    Bales C, Jähnig D, Kerskes H, Zondag H (2008) Store models for chemical and sorption storage units. Report B5—IEA SHC task 32

  44. 44

    Hauer A (2007) Sorption theory for thermal energy storage. In: Paksoy HÖ (ed) Thermal energy storage for sustainable energy consumption. Springer, Dordrecht, pp 393–408

  45. 45

    Weber R, Dorer V (2008) Long-term heat storage with NaOH. Vacuum 82:708–716. https://doi.org/10.1016/j.vacuum.2007.10.018

  46. 46

    Fujii I, Tsuchiya K, Higano M, Yamada J (1985) Studies of an energy storage system by use of the reversible chemical reaction: CaO + H2O ⇌ Ca(OH)2. Sol Energy 34:367–377. https://doi.org/10.1016/0038-092X(85)90049-0

  47. 47

    Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123. https://doi.org/10.1016/j.pmatsci.2014.03.005

  48. 48

    Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manag 45:1597–1615. https://doi.org/10.1016/j.enconman.2003.09.015

  49. 49

    Tyagi VV, Buddhi D (2007) PCM thermal storage in buildings: a state of art. Renew Sustain Energy Rev 11:1146–1166. https://doi.org/10.1016/j.rser.2005.10.002

  50. 50

    Prajapati DG, Kandasubramanian B (2019) Biodegradable polymeric solid framework-based organic phase-change materials for thermal energy storage. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.9b01693

  51. 51

    Liu M, Saman W, Bruno F (2012) Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sustain Energy Rev 16:2118–2132. https://doi.org/10.1016/j.rser.2012.01.020

  52. 52

    Zhao J, Pan R, Sun R et al (2019) High-conductivity reduced-graphene-oxide/copper aerogel for energy storage. Nano Energy 60:760–767. https://doi.org/10.1016/j.nanoen.2019.04.023

  53. 53

    Ji Y, Wen H, Zhang K et al (2016) Enhancement of thermal conductivity of phase change materials by 3D graphene @ Al2O3 foams. In: 2016 17th international conference on electronic packaging technology, pp 313–317

  54. 54

    Zalba B, Marín JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283. https://doi.org/10.1016/S1359-4311(02)00192-8

  55. 55

    Tang YR, Gao DL, Guo YF et al (2011) Supercooling and phase separation of inorganic salt hydrates as PCMs. Appl Mech Mater 71–78:2602–2605. https://doi.org/10.4028/www.scientific.net/amm.71-78.2602

  56. 56

    Ryu HW, Woo SW, Shin BC, Kim SD (1992) Prevention of supercooling and stabilization of inorganic salt hydrates as latent heat storage materials. Sol Energy Mater Sol Cells 27:161–172. https://doi.org/10.1016/0927-0248(92)90117-8

  57. 57

    Biswas DR (1977) Thermal energy storage using sodium sulfate decahydrate and water. Sol Energy 19:99–100. https://doi.org/10.1016/0038-092X(77)90094-9

  58. 58

    Lane GA (1992) Phase change materials for energy storage nucleation to prevent supercooling. Sol Energy Mater Sol Cells 27:135–160

  59. 59

    Sharma RK, Ganesan P, Tyagi VV et al (2015) Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers Manag 95:193–228. https://doi.org/10.1016/j.enconman.2015.01.084

  60. 60

    Paris J, Falardeau M, Villeneuve C (1993) Thermal storage by latent heat: a viable option for energy conservation in buildings. Energy Sources. https://doi.org/10.1080/00908319308909014

  61. 61

    Parks GS, West TJ, Naylor BF et al (1946) Thermal data on organic compounds. XXIII. Modern combustion data for fourteen hydrocarbons and five polyhydroxy alcohols. J Am Chem Soc. https://doi.org/10.1021/ja01216a028

  62. 62

    Parks GS, Moore GE, Renquist ML et al (1949) Thermal data on organic compounds. XXV. Some heat capacity, entropy and free energy data for nine hydrocarbons of high molecular weight. J Am Chem Soc. https://doi.org/10.1021/ja01178a034

  63. 63

    Lane GA (1983) Solar heat storage: latent heat materials. CRC Press, Michigan, p 0849365856

  64. 64

    Fukai J, Hamada Y, Morozumi Y, Miyatake O (2002) Effect of carbon-fiber brushes on conductive heat transfer in phase change materials. Int J Heat Mass Transf 45:4781–4792. https://doi.org/10.1016/S0017-9310(02)00179-5

  65. 65

    Kaygusuz K, Sari A (2005) Thermal energy storage system using a technical grade paraffin wax as latent heat energy storage material. Energy Sources 27:1535–1546. https://doi.org/10.1080/009083190914015

  66. 66

    Ventolà L, Cuevas-Diarte MA, Calvet T et al (2005) Molecular alloys as phase change materials (MAPCM) for energy storage and thermal protection at temperatures from 70 to 85 °C. J Phys Chem Solids 66:1668–1674. https://doi.org/10.1016/j.jpcs.2005.06.001

  67. 67

    Ventolà L, Calvet T, Cuevas-Diarte MÁ et al (2002) From concept to application. A new phase change material for thermal protection at − 11 °C. Mater Res Innov 6:284–290. https://doi.org/10.1007/s10019-002-0213-3

  68. 68

    Zhang Z, Fang X (2006) Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Convers Manag 47:303–310. https://doi.org/10.1016/j.enconman.2005.03.004

  69. 69

    Zhang Z, Zhang N, Peng J et al (2012) Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energy 91:426–431. https://doi.org/10.1016/j.apenergy.2011.10.014

  70. 70

    Sarier N, Onder E, Ozay S, Ozkilic Y (2011) Preparation of phase change material-montmorillonite composites suitable for thermal energy storage. Thermochim Acta 524:39–46. https://doi.org/10.1016/j.tca.2011.06.009

  71. 71

    Ma T, Li L, Wang Q, Guo C (2019) High-performance flame retarded paraffin/epoxy resin form-stable phase change material. J Mater Sci 54:875–885. https://doi.org/10.1007/s10853-018-2846-7

  72. 72

    Horpan MS, Şahan N, Paksoy H et al (2019) Direct impregnation and characterization of Colemanite/Ulexite–Mg(OH)2 paraffin based form-stable phase change composites. Sol Energy Mater Sol Cells 195:346–352. https://doi.org/10.1016/j.solmat.2019.03.018

  73. 73

    Pielichowski K, Flejtuch K (2003) Differential scanning calorimetry study of blends of poly(ethylene glycol) with selected fatty acids. Macromol Mater Eng 288:259–264. https://doi.org/10.1002/mame.200390022

  74. 74

    Wen R, Zhang X, Huang Y et al (2017) Preparation and properties of fatty acid eutectics/expanded perlite and expanded vermiculite shape-stabilized materials for thermal energy storage in buildings. Energy Build 139:197–204. https://doi.org/10.1016/j.enbuild.2017.01.025

  75. 75

    Kahwaji S, Johnson MB, Kheirabadi AC et al (2017) Fatty acids and related phase change materials for reliable thermal energy storage at moderate temperatures. Sol Energy Mater Sol Cells 167:109–120. https://doi.org/10.1016/j.solmat.2017.03.038

  76. 76

    Solé A, Neumann H, Niedermaier S et al (2014) Stability of sugar alcohols as PCM for thermal energy storage. Sol Energy Mater Sol Cells 126:125–134. https://doi.org/10.1016/j.solmat.2014.03.020

  77. 77

    del Barrio EP, Godin A, Duquesne M et al (2017) Characterization of different sugar alcohols as phase change materials for thermal energy storage applications. Sol Energy Mater Sol Cells 159:560–569. https://doi.org/10.1016/j.solmat.2016.10.009

  78. 78

    Gunasekara SN, Pan R, Chiu JN, Martin V (2016) Polyols as phase change materials for surplus thermal energy storage. Appl Energy 162:1439–1452. https://doi.org/10.1016/j.apenergy.2015.03.064

  79. 79

    Huang X, Lin Y, Alva G, Fang G (2017) Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage. Sol Energy Mater Sol Cells 170:68–76. https://doi.org/10.1016/j.solmat.2017.05.059

  80. 80

    Kakiuchi H, Yamazaki M, Yabe M et al (1998) A Study of erythritol as phase change material. IEA Annex 10 – PCMs and Chemical Reactions for Thermal Energy Storage, 2nd Workshop, Sofia, Bulgaria, 11–13 November 1998

  81. 81

    Barone G, Della Gatta G, Ferro D, Piacente V (1990) Enthalpies and entropies of sublimation, vaporization and fusion of nine polyhydric alcohols. J Chem Soc Faraday Trans 86:75–79. https://doi.org/10.1039/FT9908600075

  82. 82

    Talja RA, Roos YH (2001) Phase and state transition effects on dielectric, mechanical, and thermal properties of polyols. Thermochim Acta 380:109–121. https://doi.org/10.1016/S0040-6031(01)00664-5

  83. 83

    Zeng JL, Cao Z, Yang DW et al (2009) Phase diagram of palmitic acid-tetradecanol mixtures obtained by DSC experiments. J Therm Anal Calorim 95:501–505. https://doi.org/10.1007/s10973-008-9274-x

  84. 84

    Mrmak N (2014) Graphene properties-Graphene-Battery.net. http://www.graphene-battery.net/graphene-properties.htm. Accessed 30 Dec 2019

  85. 85

    Zhong Y, Zhou M, Huang F et al (2013) Effect of graphene aerogel on thermal behavior of phase change materials for thermal management. Sol Energy Mater Sol Cells 113:195–200. https://doi.org/10.1016/j.solmat.2013.01.046

  86. 86

    Ye S, Zhang Q, Hu D, Feng J (2015) Core–shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage. J Mater Chem A 3:4018–4025. https://doi.org/10.1039/c4ta05448b

  87. 87

    Sheng K, Sun Y, Li C et al (2012) Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci Rep 2:247. https://doi.org/10.1038/srep00247

  88. 88

    Chen K, Chen L, Chen Y et al (2012) Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application. J Mater Chem 22:20968. https://doi.org/10.1039/c2jm34816k

  89. 89

    Pham HD, Pham VH, Cuong TV et al (2011) Synthesis of the chemically converted graphene xerogel with superior electrical conductivity. Chem Commun 47:9672. https://doi.org/10.1039/c1cc13329b

  90. 90

    Worsley MA, Pauzauskie PJ, Olson TY et al (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132:14067–14069. https://doi.org/10.1021/ja1072299

  91. 91

    Yang J, Qi GQ, Bao RY et al (2018) Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials. Energy Storage Mater 13:88–95. https://doi.org/10.1016/j.ensm.2017.12.028

  92. 92

    Ji H, Sellan DP, Pettes MT et al (2014) Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ Sci 7:1185–1192. https://doi.org/10.1039/c3ee42573h

  93. 93

    Xin G, Sun H, Scott SM et al (2014) Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage. ACS Appl Mater Interfaces. https://doi.org/10.1021/am503619a

  94. 94

    Jain V, Kandasubramanian B (2020) Functionalized graphene materials for hydrogen storage. J Mater Sci 55:1865–1903. https://doi.org/10.1007/s10853-019-04150-y

  95. 95

    Shi JN, Der Ger M, Liu YM et al (2013) Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon N Y. https://doi.org/10.1016/j.carbon.2012.08.068

  96. 96

    Xu T, Li Y, Chen J et al (2018) Improving thermal management of electronic apparatus with paraffin (PA)/expanded graphite (EG)/graphene (GN) composite material. Appl Therm Eng 140:13–22. https://doi.org/10.1016/j.applthermaleng.2018.05.060

  97. 97

    Bin YuC, Yang SH, Pak SY et al (2018) Graphene embedded form stable phase change materials for drawing the thermo-electric energy harvesting. Energy Convers Manag 169:88–96. https://doi.org/10.1016/j.enconman.2018.05.001

  98. 98

    Bhalara PD, Balasubramanian K, Banerjee BS (2015) Spider–web textured electrospun composite of graphene for sorption of Hg(II) ions. Mater Focus 4:154–163. https://doi.org/10.1166/mat.2015.1232

  99. 99

    Thakur K, Kandasubramanian B (2019) Graphene and graphene oxide-based composites for removal of organic pollutants: a review. J Chem Eng Data 64:833–867. https://doi.org/10.1021/acs.jced.8b01057

  100. 100

    Joshi A, Bajaj A, Singh R et al (2013) Graphene nanoribbon–PVA composite as EMI shielding material in the X band. Nanotechnology 24:455705. https://doi.org/10.1088/0957-4484/24/45/455705

  101. 101

    Yadav R, Subhash A, Chemmenchery N, Kandasubramanian B (2018) Graphene and graphene oxide for fuel cell technology. Ind Eng Chem Res 57:9333–9350. https://doi.org/10.1021/acs.iecr.8b02326

  102. 102

    Sahoo BN, Kandasubramanian B (2014) Photoluminescent carbon soot particles derived from controlled combustion of camphor for superhydrophobic applications. RSC Adv 4:11331–11342. https://doi.org/10.1039/c3ra46193a

  103. 103

    Shang Y, Zhang D (2016) Preparation and thermal properties of graphene oxide–microencapsulated phase change materials. Nanoscale Microscale Thermophys Eng 20:147–157. https://doi.org/10.1080/15567265.2016.1236865

  104. 104

    Yang J, Tang LS, Bao RY et al (2018) Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability. Sol Energy Mater Sol Cells 174:56–64. https://doi.org/10.1016/j.solmat.2017.08.025

  105. 105

    Qi GQ, Yang J, Bao RY et al (2015) Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage. Carbon N Y 88:196–205. https://doi.org/10.1016/j.carbon.2015.03.009

  106. 106

    Palaniappan N, Cole IS, Kuznetsov AE et al (2019) Experimental and computational studies of a graphene oxide barrier layer covalently functionalized with amino acids on Mg AZ13 alloy in salt medium. RSC Adv 9:32441–32447. https://doi.org/10.1039/C9RA06549K

  107. 107

    Palaniappan N, Cole IS, Caballero-Briones F et al (2018) Praseodymium-decorated graphene oxide as a corrosion inhibitor in acidic media for the magnesium AZ31 alloy. RSC Adv 8:34275–34286. https://doi.org/10.1039/C8RA05118F

  108. 108

    Kant K, Shukla A, Sharma A, Henry Biwole P (2017) Heat transfer study of phase change materials with graphene nano particle for thermal energy storage. Sol Energy 146:453–463. https://doi.org/10.1016/j.solener.2017.03.013

  109. 109

    Jing G, Dehong X, Li W et al (2018) Low concentration graphene nanoplatelets for shape stabilization and thermal transfer reinforcement of Mannitol: a phase change material for a medium-temperature thermal energy system. Mater Res Express. https://doi.org/10.1088/2053-1591/aaaf59

  110. 110

    Qi G, Yang J, Bao R et al (2017) Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res 10:802–813. https://doi.org/10.1007/s12274-016-1333-1

  111. 111

    Kim J, Ou E, Kholmanov I et al (2015) Continuous carbon nanotube–ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano 9:11699–11707. https://doi.org/10.1021/acsnano.5b02917

  112. 112

    Liu K-K, Jin B, Meng L-Y (2018) Glucose/graphene-based aerogels for gas adsorption and electric double layer capacitors. Polymers 11:40. https://doi.org/10.3390/polym11010040

  113. 113

    Liu L, Zheng K, Yan Y et al (2018) Graphene aerogels enhanced phase change materials prepared by one-pot method with high thermal conductivity and large latent energy storage. Sol Energy Mater Sol Cells 185:487–493. https://doi.org/10.1016/j.solmat.2018.06.005

  114. 114

    Qu Y, Lu C, Su Y et al (2018) Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage. Carbon N Y 127:77–84. https://doi.org/10.1016/j.carbon.2017.10.088

  115. 115

    (2013) Ultra-light aerogel produced at a Zhejiang University Lab-Press releases-Zhejiang University

  116. 116

    Hu H, Zhao Z, Wan W et al (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25:2219–2223. https://doi.org/10.1002/adma.201204530

  117. 117

    McNaught AD, Wilkinson A (2006) Aerogel. In: IUPAC Compendium of Chemical Terminology. IUPAC, Research Triangle Park

  118. 118

    Shang J-J, Yang Q-S, Liu X (2017) New coarse-grained model and its implementation in simulations of graphene assemblies. J Chem Theory Comput 13:3706–3714. https://doi.org/10.1021/acs.jctc.7b00051

  119. 119

    Cheng Y, Zhou S, Hu P et al (2017) Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction. Sci Rep 7:1439. https://doi.org/10.1038/s41598-017-01601-x

  120. 120

    Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano. https://doi.org/10.1021/nn1006368

  121. 121

    Li Y, Chen J, Huang L et al (2014) Highly compressible macroporous graphene monoliths via an improved hydrothermal process. Adv Mater 26:4789–4793. https://doi.org/10.1002/adma.201400657

  122. 122

    Yang J, Qi GQ, Liu Y et al (2016) Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon N Y 100:693–702. https://doi.org/10.1016/j.carbon.2016.01.063

  123. 123

    Tian B, Yang W, He F et al (2017) Paraffin/carbon aerogel phase change materials with high enthalpy and thermal conductivity. Fuller Nanotub Carbon Nanostructures 25:512–518. https://doi.org/10.1080/1536383X.2017.1347638

  124. 124

    Tang LS, Yang J, Bao RY et al (2017) Polyethylene glycol/graphene oxide aerogel shape-stabilized phase change materials for photo-to-thermal energy conversion and storage via tuning the oxidation degree of graphene oxide. Energy Convers Manag 146:253–264. https://doi.org/10.1016/j.enconman.2017.05.037

  125. 125

    Xiang J, Drzal LT (2011) Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material. Sol Energy Mater Sol Cells. https://doi.org/10.1016/j.solmat.2011.01.048

  126. 126

    Xu Y, Fleischer AS, Feng G (2017) Reinforcement and shape stabilization of phase-change material via graphene oxide aerogel. Carbon N Y 114:334–346. https://doi.org/10.1016/j.carbon.2016.11.069

  127. 127

    Fang X, Hao P, Song B et al (2017) Form-stable phase change material embedded with chitosan-derived carbon aerogel. Mater Lett 195:79–81. https://doi.org/10.1016/j.matlet.2017.02.075

  128. 128

    McNaught AD, Wilkinson A (2006) Foam. In: IUPAC compendium of chemical terminology. IUPAC, Research Triangle Park

  129. 129

    Paronyan TM, Thapa AK, Sherehiy A et al (2017) Incommensurate graphene foam as a high capacity lithium intercalation anode. Sci Rep 7:1–11. https://doi.org/10.1038/srep39944

  130. 130

    Pettes MT, Ji H, Ruoff RS, Shi L (2012) Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite. Nano Lett 12:2959–2964. https://doi.org/10.1021/nl300662q

  131. 131

    Shang Y, Zhang D (2017) Preparation and characterization of three-dimensional graphene network encapsulating 1-hexadecanol composite. Appl Therm Eng 111:353–357. https://doi.org/10.1016/j.applthermaleng.2016.09.129

  132. 132

    Abuşka M, Şevik S, Kayapunar A (2019) A comparative investigation of the effect of honeycomb core on the latent heat storage with PCM in solar air heater. Appl Therm Eng 148:684–693. https://doi.org/10.1016/j.applthermaleng.2018.11.056

  133. 133

    Mu B, Li M (2019) Synthesis of novel form-stable composite phase change materials with modified graphene aerogel for solar energy conversion and storage. Sol Energy Mater Sol Cells 191:466–475. https://doi.org/10.1016/j.solmat.2018.11.025

  134. 134

    Xue F, Lu Y, Qi XD et al (2019) Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities. Chem Eng J 365:20–29. https://doi.org/10.1016/j.cej.2019.02.023

  135. 135

    Wang Z, Shen X, Akbari Garakani M et al (2015) Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. ACS Appl Mater Interfaces 7:5538–5549. https://doi.org/10.1021/acsami.5b00146

  136. 136

    Fan Z, Gong F, Nguyen ST, Duong HM (2015) Advanced multifunctional graphene aerogel—poly (methyl methacrylate) composites: experiments and modeling. Carbon N Y 81:396–404. https://doi.org/10.1016/j.carbon.2014.09.072

  137. 137

    Balasubramanian K (2012) Reinforcement of poly ether sulphones (PES) with exfoliated graphene oxide for aerospace applications. In: International conference on structural nano composites (NANOSTRUC 2012). Cranfield University, Bedfordshire

  138. 138

    Salimian S, Zadhoush A (2019) Water-glass based silica aerogel: unique nanostructured filler for epoxy nanocomposites. J Porous Mater 26:1755–1765. https://doi.org/10.1007/s10934-019-00757-3

  139. 139

    Chen WJ, Shen MY, Li YL et al (2010) Thermal and mechanical properties of carbon aerogels for nanocomposites. In: 7th Asian-Australasian conference on composite materials. Taipei, pp 1234–1238

  140. 140

    He J, Li X, Su D et al (2016) Ultra-low thermal conductivity and high strength of aerogels/fibrous ceramic composites. J Eur Ceram Soc 36:1487–1493. https://doi.org/10.1016/j.jeurceramsoc.2015.11.021

Download references

Acknowledgement

The authors are thankful to Dr. C. P. Ramanarayanan, Vice-Chancellor of Defence Institute of Advanced Technology (DU), Pune, for the motivation and support. The authors would like to thank Mr. Swaroop Gharde and Mr. Deepak Prajapati for technical discussion and support. The authors would also like to acknowledge Mr. Prakash Gore and Mr. Ravi Prakash Magisetty for their help with technical editing. The authors are also thankful to the editor and anonymous reviewers for improving the quality of the revised manuscript by their valuable comments and suggestions.

Author information

Correspondence to Balasubramanian Kandasubramanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kashyap, S., Kabra, S. & Kandasubramanian, B. Graphene aerogel-based phase changing composites for thermal energy storage systems. J Mater Sci 55, 4127–4156 (2020). https://doi.org/10.1007/s10853-019-04325-7

Download citation