Skip to main content
Log in

Z-scheme BiOCl/Bi–Bi2O3 heterojunction with oxygen vacancy for excellent degradation performance of antibiotics and dyes

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Researchers have begun to pay close attention to the construction of artificial Z-scheme photocatalysts due to their excellent ability to separate photogenerated electron–hole pairs and prominent redox ability. In this study, Bi-bridged Z-scheme BiOCl/Bi2O3 (BiOCl/Bi–Bi2O3) heterojunctions with oxygen vacancies were prepared via a one-step hydrothermal method. The phase structure, morphology, and optical properties of the samples were characterized using XRD, XPS, ESR, FESEM, HRTEM, and UV–Vis DRS. Compared with BiOCl and Bi–Bi2O3, the prepared BiOCl/Bi–Bi2O3(25% and 50%) samples exhibited enhanced photocatalytic activity in degrading colorless antibiotics (tetracycline hydrochloride) and colored dyes (RhB) under visible light irradiation. This result indicated improved visible light absorption due to the presence of oxygen vacancies and enhanced separation efficiency of the photogenerated electron–hole pairs and high redox ability due to the construction of the Z-scheme. On the basis of the results of radical-trapping, photoelectron chemical experiments, and PL analysis, a possible photocatalytic mechanism of the Z-scheme BiOCl/Bi–Bi2O3 heterojunctions was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Hao OY, Huang HQ, Wang HG, Zheng XM (2019) The morphology evolution of nitrogen-doped carbon quantum dots/hollow TiO2 composites and their applications in photocatalysis. J Mater Sci. https://doi.org/10.1007/s10853-019-03991-x

    Article  Google Scholar 

  2. Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL (2015) Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 49:6772–6782

    CAS  Google Scholar 

  3. Segovia M, Matías A, Aliaga J et al (2019) Heterostructured 2D ZnO hybrid nanocomposites sensitized with cubic Cu2O nanoparticles for sunlight photocatalysis. J Mater Sci 54:13523–13536. https://doi.org/10.1007/s10853-019-03878-x

    Article  CAS  Google Scholar 

  4. Fan Y, Ma W, Han D, Gan S, Dong X, Niu L (2015) Convenient Recycling of 3D AgX/Graphene Aerogels (X = Br, Cl) for Efficient Photocatalytic Degradation of Water Pollutants. Adv Mater 27:3767–3773

    CAS  Google Scholar 

  5. Darabdhara G, Boruah PK, Borthakur P, Hussain N, Das MR, Ahamad T, Alshehri SM, Malgras V, Wu KC, Yamauchi Y (2016) Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water. Nanoscale 8:8276–8287

    CAS  Google Scholar 

  6. Liang SH, Zhang DF, Pu XP, Yao XT, Han RT, Yin J, Ren XZ (2019) A novel Ag2O/g-C3N4 p-n heterojunction photocatalysts with enhanced visible and near-infrared light activity. Sep Purif Technol 210:786–797

    CAS  Google Scholar 

  7. He XY, Zhang CL (2019) Recent advances in structure design for enhancing photocatalysis. J Mater Sci 54:8831–8851. https://doi.org/10.1007/s10853-019-03417-8

    Article  CAS  Google Scholar 

  8. Chen S, Hu Y, Meng S, Fu X (2014) Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Appl Catal B Environ 150–151(150):564–573

    Google Scholar 

  9. Xiao TT, Tang Z, Yang Y, Tang LQ, Zhou Y, Zou ZG (2018) In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-Scheme photocatalyst for the degradation of antibiotics. Appl Catal B Environ 220:417–428

    CAS  Google Scholar 

  10. Ren XZ, Sun YH, Xing H et al (2018) Magnetically separable Fe3O4@C/BiOBr heterojunction for the enhanced visible light-driven photocatalytic performance. J Nanopart Res 20(10):268

    Google Scholar 

  11. Ren X, Sun Y, Xing H et al (2019) 3D/2D Ln3+-doped BiOBr/rGO heterostructure with enhanced photocatalytic performance. J Nanopart Res 21:111

    Google Scholar 

  12. Ren XZ, Wu K, Qin ZG, Zhao XC, Yang H (2019) The construction of type II heterojunction of Bi2WO6/BiOBr photocatalyst with improved photocatalytic performance. J Alloys Compd 788:102–109

    CAS  Google Scholar 

  13. Cheng H, Huang B, Dai Y (2014) Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6:2009–2026

    CAS  Google Scholar 

  14. Jiang Z, Liu Y, Jing T, Huang B, Wang Z, Zhang X, Qin X, Dai Y (2015) One-pot solvothermal synthesis of S doped BiOCl for solar water oxidation. RSC Adv 5:47261–47264

    CAS  Google Scholar 

  15. Ye LQ, Deng KJ, Xu F, Tian LH, Peng TY, Zan L (2012) Increasing visible-light absorption for photocatalysis with black BiOCl. PCCP 14(1):82–85

    CAS  Google Scholar 

  16. Cai Y, Li D, Sun J et al (2018) Synthesis of BiOCl nanosheets with oxygen vacancies for the improved photocatalytic properties. Appl Surf Sci 439:697–704

    CAS  Google Scholar 

  17. Guan M, Xiao C, Zhang J et al (2013) Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J Am Chem Soc 135:10411–10417

    CAS  Google Scholar 

  18. Wang Q, Wang W, Zhong LL, Liu DM, Cao XZ, Cui FY (2018) Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation. Appl Catal B Environ 220:290–302

    CAS  Google Scholar 

  19. Sun M, Zhao Q, Du C, Liu Z (2015) Enhanced visible light photocatalytic activity in BiOCl/SnO2: heterojunction of two wide band-gap semiconductors. RSC Adv 5:22740–22752

    CAS  Google Scholar 

  20. Wetchakun N, Chaiwichain S, Inceesungvorn B, Pingmuang K, Phanichphant S, Minett AI, Chen J (2012) BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity. ACS Appl Mater Interfaces 4:3718–3723

    CAS  Google Scholar 

  21. Zhang J, Qiao SZ, Qi LF, Yu JG (2013) Fabrication of NiS modified CdS nanorod p–n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity. Phys Chem Chem Phys 15:12088–12094

    CAS  Google Scholar 

  22. Yun HJ, Lee H, Kim ND, Lee DM, Yu S, Yi J (2011) A combination of two visible-light responsive photocatalysts for achieving the z-scheme in the solid state. ACS Nano 5:4084–4090

    CAS  Google Scholar 

  23. Zhou P, Yu JG, Jaroniec M (2014) All-solid-state Z-scheme photocatalytic systems. Adv Mater 26:4920–4935

    CAS  Google Scholar 

  24. Bard AJ (1979) Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem 10:59–75

    CAS  Google Scholar 

  25. Maeda K (2013) Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal 3:1486–1503

    CAS  Google Scholar 

  26. Tada H, Mitsui T, Kiyonaga T, Alita T, Tanaka K (2006) All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nat Mater 5:782–786

    CAS  Google Scholar 

  27. Yu W, Xu D, Peng T (2015) Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. J Mater Chem A 3:19936–19947

    CAS  Google Scholar 

  28. Lv JL, Zhang JF, Liu WJ, Li Z, Dai K, Liang CH (2018) Bi SPR-promoted Z-scheme Bi2MoO6/CdS-diethylenetriamine composite with effectively enhanced visible light photocatalytic hydrogen evolution activity and stability. ACS Sustain Chem Eng 6:696–706

    CAS  Google Scholar 

  29. Deng F, Zhang Q, Yang LX, Luo XB, Wang AJ, Luo SL, Dionysiou DD (2018) Visible-light-responsive graphene-functionalized Bi-bridge Z-scheme black BiOCl/Bi2O3 heterojunction with oxygen vacancy and multiple charge transfer channels for efficient photocatalytic degradation of 2-nitrophenol and industrial wastewater treatment. Appl Catal B Environ 238:61–69

    CAS  Google Scholar 

  30. Wang CH, Shao CL, Liu YC, Zhang LN (2008) Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning. Scripta Mater 59(3):332–335

    CAS  Google Scholar 

  31. Yu Y, Cao CY, Liu H, Li P, Wei FF, Jiang Y, Song WG (2014) A Bi/BiOCl heterojunction photocatalyst with enhanced electron–hole separation and excellent visible light photodegrading activity. J Mater Chem 2:1677–1681

    CAS  Google Scholar 

  32. Babu VJ, Bhavatharini RSR, Ramakrishna S (2014) Bi2O3 and BiOCl electrospun nanosheets and morphology-dependent photocatalytic properties. RSC Adv 4:29957

    CAS  Google Scholar 

  33. Chang XJ, Cheng C, Sha W, Li X, Ji G, Deng S, Yu G (2010) Photocatalytic decomposition of 4-t-octylphenol over NaBiO3 driven by visible light: catalytic kinetics and corrosion products characterization. J Hazard Mater 173:765–772

    CAS  Google Scholar 

  34. Zhang J, Lu Y, Ge L, Han C, Li Y, Gao Y, Li S, Xu H (2017) Novel AuPd bimetallic alloy decorated 2D BiVO4 nanosheets with enhanced photocatalytic performance under visible light irradiation. Appl Catal B Environ 204:385–393

    CAS  Google Scholar 

  35. Tan H, Zhao Z, Zhu WB, Coker EN, Li B, Zheng M, Yu W, Fan H, Sun Z (2014) Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3. ACS Appl Mater Interfaces 6:19184–19190

    CAS  Google Scholar 

  36. Li J, Wu X, Pan W, Zhang G, Chen H (2017) Theoretical investigation of structural, mechanical and electronic properties of GaAs1-xNx alloys under ambient and high pressure. Angew Chem 129:1–6

    Google Scholar 

  37. Liu X, Xiong X, Ding S, Jiang Q, Hu J (2017) Bi metal-modified Bi4O5I2 hierarchical microspheres with oxygen vacancies for improved photocatalytic performance and mechanism insights. Catal Sci Technol 7:3580–3590

    CAS  Google Scholar 

  38. Lv Y, Liu Y, Zhu Y (2014) Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO4 nanorod. J Mater Chem A 2:1174–1182

    CAS  Google Scholar 

  39. Jiang LB, Yuan XZ, Zeng GM et al (2018) In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Appl Catal B Environ 227:376–385

    CAS  Google Scholar 

  40. Fu S, He Y, Wu Q, Wu Y, Wu T (2016) Visible-light responsive plasmonic Ag2O/Ag/g-C3N4 nanosheets with enhanced photocatalytic degradation of Rhodamine B. J Mater Res 31:2252–2260

    CAS  Google Scholar 

  41. Zhang PY, Wang TT, Zeng HP (2017) Design of Cu-Cu2O/g-C3N4 nanocomponent photocatalysts for hydrogen evolution under visible light irradiation using water-soluble Erythrosin B dye sensitization. Appl Surf Sci 391:404–414

    CAS  Google Scholar 

  42. Li BS, Lai C, Zeng GM et al (2018) Facile hydrothermal synthesis of Z-scheme Bi2Fe4O9/Bi2WO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity. ACS Appl Mater Interfaces 10:18824–18836

    CAS  Google Scholar 

  43. Tang YX, Li XS, Zhang DF, Pu XP, Ge B, Huang YL (2019) Noble metal-free ternary MoS2/Zn0.5Cd0.5S/g-C3N4 heterojunction composite for highly efficient photocatalytic H2 production. Mater Res Bull 110:214–222

    Google Scholar 

  44. Shao ZW, Zeng TT, He YN, Zhang DF, Pu XP (2019) A novel magnetically separable CoFe2O4/Cd0.9Zn0.1S photocatalyst with remarkably enhanced H2 evolution activity under visible light irradiation. Chem Eng J 359:485–495

    CAS  Google Scholar 

  45. Qian J, Shen C, Yan J, Xi F, Dong X, Liu J (2017) Tailoring the electronic properties of graphene quantum dots by P doping and their enhanced performance in metal-free composite photocatalyst. J Phys Chem C 122:349–358

    Google Scholar 

  46. Wen X, Niu C, Huang D, Zhang L, Liang C, Zeng G (2017) Study of the photocatalytic degradation pathway of norfloxacin and mineralization activity using a novel ternary Ag/AgCl-CeO2 photocatalyst. J Catal 355:73–86

    CAS  Google Scholar 

  47. Ye L, Zan L, Tian L, Peng T, Zhang J (2011) The 001 facets-dependent high photoactivity of BiOCl nanosheets. Chem Commun 47:6951–6953

    CAS  Google Scholar 

  48. Liu BT, Xu WJ, Sun T, Chen M, Tian LL, Wang JB (2014) Efficient visible light photocatalytic activity of CdS on (0 0 1) facets exposed to BiOCl. New J Chem 38:2273

    CAS  Google Scholar 

  49. Wang J, Tang L, Zeng G, Liu Y, Zhou Y, Deng Y, Wang J, Peng B (2017) Plasmonic Bi metal deposition and g-C3N4 coating on Bi2WO6 microspheres for efficient visible-light photocatalysis. ACS Sustain Chem Eng 5:1062–1072

    CAS  Google Scholar 

  50. Hong Y, Jiang Y, Li C, Fan W, Yan X, Yan M, Shi W (2016) In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants. Appl Catal B Environ 180:663–673

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by Natural Science Foundation of Shandong Province (CN) (Grant No. ZR2017PB003 and the PhD Early Development Program of Liaocheng University (Grant No. 318051505).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaozhen Ren or Xipeng Pu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Qin, Z., Zhang, X. et al. Z-scheme BiOCl/Bi–Bi2O3 heterojunction with oxygen vacancy for excellent degradation performance of antibiotics and dyes. J Mater Sci 55, 4017–4029 (2020). https://doi.org/10.1007/s10853-019-04300-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04300-2

Navigation