Skip to main content
Log in

An effective photocatalytic and photoelectrochemical performance of β/γ-MnS/CdS composite photocatalyst for degradation of flumequine and oxytetracycline antibiotics under visible light irradiation

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, we report the MnS, CdS and MnS/CdS nanoparticles prepared by precipitation method. The as-synthesized particles were characterized using by scanning electron microscope, X-ray diffraction, UV-diffuse reflectance spectroscopy, photoluminescence, X-ray photoelectron spectroscopy and photoelectrochemical technique. MnS/CdS composite combination enhanced the optical, photocatalytic, and photoelectronic properties of the samples. Photocatalytic performances of the samples were evaluated under visible light irradiation. The photoelectrode activity of all samples was also investigated. MnS/CdS composites were found as efficient photocatalysts under visible light. The enhanced photocatalysis of the composites was attributed to the possible defect structure, high electron density of CdS and inhibition of electron/hole pairs as well as optimal content of CdS in the composite system. MnS/CdS composites must be evaluated for photocatalytic and photoelectrochemical activities with broader visible light range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Chen X, Zhang J, Zeng J, Shi Y, Lin S, Huang G, Ji Z (2019) MnS coupled with ultrathin MoS2 nanolayers as heterojunction photocatalyst for high photocatalytic and photoelectrochemical activities. J Alloy Compd 771:364–372

    Article  CAS  Google Scholar 

  2. Che H, Che G, Jiang E, Liu C, Dong H, Li C (2018) A novel Z-Scheme CdS/Bi3O4Cl heterostructure for photocatalytic degradation of antibiotics: mineralization activity, degradation pathways and mechanism insight. J Taiwan Inst Chem E 91:224–234

    Article  CAS  Google Scholar 

  3. Shao B, Liu Z, Zeng G, Wu Z, Liu Y, Cheng M, Chen M, Liu Y, Zhang W, Feng H (2018) Nitrogen-doped hollow mesoporous carbon spheres modified g-C3N4/Bi2O3 direct dual semiconductor photocatalytic system with enhanced antibiotics degradation under visible light. ACS Sustain Chem Eng. 6(12):16424–16436

    Article  CAS  Google Scholar 

  4. Shao B, Liu Z, Zeng G, Liu Y, Yang X, Zhou C, Chen M, Liu Y, Jiang Y, Yan M (2019) Immobilization of laccase on hollow mesoporous carbon nanospheres: noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal. J Hazard 362:318–326

    Article  CAS  Google Scholar 

  5. Reyes-Garcia EA, Sun Y, Raftery D (2007) Solid-state characterization of the nuclear and electronic environments in a boron − fluoride co-doped TiO2 visible-light photocatalyst. J Phys Chem C 111(45):17146–17154

    Article  CAS  Google Scholar 

  6. Shao B, Liu X, Liu Z, Zeng G, Zhang W, Liang Q, Liu Y, He Q, Yuan X, Wang D, Luo S (2019) Synthesis and characterization of 2D/0D g-C3N4/CdS-nitrogen doped hollow carbon spheres (NHCs) composites with enhanced visible light photodegradation activity for antibiotic. Chem Eng J 374:479–493

    Article  Google Scholar 

  7. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570

    Article  CAS  Google Scholar 

  8. Klimov VI (2006) Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication. Appl Phys Lett 89(12):123118

    Article  Google Scholar 

  9. Tian J, Zhang Q, Uchaker E, Gao R, Qu X, Zhang S, Cao G (2013) Architectured ZnO photoelectrode for high efficiency quantum dot sensitized solar cells. Energy Environ Sci 6(12):3542–3547

    Article  CAS  Google Scholar 

  10. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  CAS  Google Scholar 

  11. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582

    Article  CAS  Google Scholar 

  12. Wang D, Xu Z, Luo Q, Li X, An J, Yin R, Bao C (2016) Preparation and visible-light photocatalytic performances of gC3N4 surface hybridized with a small amount of CdS nanoparticles. J Mater Sci 51(2):893–902. https://doi.org/10.1007/s10853-015-9417-y

    Article  CAS  Google Scholar 

  13. Dan M, Zhang Q, Yu S, Prakash A, Lin Y, Zhou Y (2017) Noble-metal-free MnS/In2S3 composite as highly efficient visible light driven photocatalyst for H2 production from H2S. Appl Catal B-Environ 217:530–539

    Article  CAS  Google Scholar 

  14. Huang Y, Chen J, Zou W, Zhang L, Hu L, He M, Gu L, Deng J, Xing X (2016) TiO2/CdS porous hollow microspheres rapidly synthesized by salt-assistant aerosol decomposition method for excellent photocatalytic hydrogen evolution performance. Dalton Trans 45(3):1160–1165

    Article  CAS  Google Scholar 

  15. Nezamzadeh-Ejhieh A, Banan Z (2012) Sunlight assisted photodecolorization of crystal violet catalyzed by CdS nanoparticles embedded on zeolite A. Desalination 284:157–166

    Article  CAS  Google Scholar 

  16. Marschall R (2014) Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv Funct Mater 24(17):2421–2440

    Article  CAS  Google Scholar 

  17. Ba Q, Jia X, Huang L, Li X, Chen W, Mao L (2019) Alloyed PdNi hollow nanoparticles as cocatalyst of CdS for improved photocatalytic activity toward hydrogen production. Int J Hydrog Energy 44(12):5872–5880

    Article  CAS  Google Scholar 

  18. Oh JY, Yu JM, Chowdhury SR, Lee TI, Misra M (2019) Significant impact of Pd nanoparticle and CdS nanolayer of Pd@CdS@ZnO core-shell nanorods on enhancing catalytic, photoelectrochemical and photocurrent generation activity. Electrochim Acta 298:694–703

    Article  CAS  Google Scholar 

  19. Yang C, Lv Y, Zhang H, Zhou X (2019) Double-shelled ZnO/TiO2/CdS nanorod arrays for enhanced photoelectrocatalytic performance. J Porous Mater 26(3):903–912

    Article  CAS  Google Scholar 

  20. Wang J, Luo J, Liu D, Chen S, Peng T (2019) One-pot solvothermal synthesis of MoS2-modified Mn0.2Cd0.8S/MnS heterojunction photocatalysts for highly efficient visible-light-driven H2 production. Appl Catal B Environ 241:130–140

    Article  CAS  Google Scholar 

  21. Li H, Wang Z, He Y, Meng S, Xu Y, Chen S, Fu X (2019) Rational synthesis of MnxCd1−xS for enhanced photocatalytic H2 evolution: effects of S precursors and the feed ratio of Mn/Cd on its structure and performance. J Colloid Interface Sci 535:469–480

    Article  CAS  Google Scholar 

  22. Shi Y, Xue F, Li C, Zhao Q, Qu Z (2011) Preparation and hydrothermal annealing of pure metastable β-MnS thin films by chemical bath deposition (CBD). Mater Res Bull 46(3):483–486

    Article  CAS  Google Scholar 

  23. Michel FM, Schoonen MAA, Zhang XV, Martin ST, Parise JB (2006) Hydrothermal synthesis of pure α-phase manganese (II) sulfide without the use of organic reagents. Chem Mater 18:1726–1736

    Article  CAS  Google Scholar 

  24. Channei D, Chansaenpak K, Jannoey P, Phanichphant S (2019) The staggered heterojunction of CeO2/CdS nanocomposite for enhanced photocatalytic activity. Solid State Sci 96:105951

    Article  CAS  Google Scholar 

  25. Shao B, Liu X, Liu Z, Zeng G, Liang Q, Liang C, Cheng Y, Zhang W, Liu Y, Gong S (2019) A novel double Z-scheme photocatalyst Ag3PO4/Bi2S3/Bi2O3 with enhanced visible-light photocatalytic performance for antibiotic degradation. Chem Eng J 368:730–745

    Article  CAS  Google Scholar 

  26. Dhandayuthapani T, Girish M, Sivakumar R, Sanjeeviraja C, Gopalakrishnan R (2015) Tuning the morphology of metastable MnS films by simple chemical bath deposition technique. Appl Surf Sci 353:449–458

    Article  CAS  Google Scholar 

  27. Al-Fahdi T, Al Marzouqi F, Kuvarega AT, Mamba BB, Al Kindy SM, Kim Y, Selvaraj R (2019) Visible light active CdS@TiO2 core-shell nanostructures for the photodegradation of chlorophenols. Photochem Photobiol A 374:75–83

    Article  CAS  Google Scholar 

  28. Channei D, Chansaenpak K, Jannoey P, Phanichphant S (2019) The staggered heterojunction of CeO2/CdS nanocomposite for enhanced photocatalytic activity. Solid State Sci 96:105951

    Article  CAS  Google Scholar 

  29. Ren Y, Gao L, Sun J, Liu Y, Xie X (2012) Facile synthesis of gamma-MnS hierarchical nanostructures with high photoluminescence. Ceram Int 38(1):875–881

    Article  CAS  Google Scholar 

  30. Jamble SN, Ghoderao KP, Kale RB (2018) Studies on growth mechanism and physical properties of hydrothermally synthesized CdS with novel hierarchical superstructures and their photocatalytic activity. J Phys Chem Solids 114:109–120

    Article  CAS  Google Scholar 

  31. Kumar S, Ojha AK (2016) In-situ synthesis of reduced graphene oxide decorated with highly dispersed ferromagnetic CdS nanoparticles for enhanced photocatalytic activity under UV irradiation. Mater Chem Phys 171:126–136

    Article  CAS  Google Scholar 

  32. Cui H, Zhou Y, Mei J, Li Z, Xu S, Yao C (2018) Synthesis of CdS/BiOBr nanosheets composites with efficient visible-light photocatalytic activity. J Phys Chem Solids 112:80–87

    Article  CAS  Google Scholar 

  33. Fang X, Cui L, Pu T, Song J, Zhang X (2018) Core-shell CdS@MnS nanorods as highly efficient photocatalysts for visible light driven hydrogen evolution. Appl Surf Sci 457:863–869

    Article  CAS  Google Scholar 

  34. Yuvaraj S et al (2019) Hydrothermal synthesis of ZnO–CdS nanocomposites: structural, optical and electrical behavior. Ceram Int 46:391–402. https://doi.org/10.1016/j.ceramint.2019.08.274

    Article  CAS  Google Scholar 

  35. Kim YS, Tai WP, Shu SJ (2005) Effect of preheating temperature on structural and optical properties of ZnO thin films by sol–gel process. Thin Solid Films 491(1–2):153–160

    Article  CAS  Google Scholar 

  36. Vaizoğullar Aİ (2017) TiO2/ZnO supported on sepiolite: preparation, structural characterization, and photocatalytic degradation of flumequine antibiotic in aqueous solution. Chem Eng Commun 204(6):689–697

    Article  Google Scholar 

  37. Xu Y, Chen Y, Fu WF (2018) Visible-light driven oxidative coupling of amines to imines with high selectivity in air over core-shell structured CdS@C3N4. Appl Catal B: Environ. 236:176–183

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Muğla Sıtkı Koçman University Coordination of Scientific Research Project Unit with 19/088/01/1/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali İmran Vaizoğullar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaizoğullar, A.İ. An effective photocatalytic and photoelectrochemical performance of β/γ-MnS/CdS composite photocatalyst for degradation of flumequine and oxytetracycline antibiotics under visible light irradiation. J Mater Sci 55, 4005–4016 (2020). https://doi.org/10.1007/s10853-019-04299-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04299-6

Navigation