Skip to main content
Log in

Colossal and anomalous dielectric behavior in grain-oriented TiO2

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, anatase structure TiO2 particles with a preferential grain growth direction of [002] were synthesized by a facile and modified sol–gel approach. The pellets pressed from the TiO2 particles possess colossal dielectric constant (> 7 × 103 at 100 Hz and room temperature). The colossal dielectric constant behavior can be associated with the Maxwell–Wagner relaxation due to the textured grain structure. This approach is simple and provides an avenue to obtain the excellent dielectric properties of ceramics with oriented grains. Contrary to traditional relaxation behavior, an anomalous dielectric behavior was observed above room temperature. This abnormal dielectric behavior was caused by the positive temperature coefficient of resistance effect resulting from humidity response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hu WB, Liu Y, Withers RL, Frankcombe TJ, Norén L, Snashall A, Kitchin M, Smith P, Gong B, Chen H, Schiemer J, Brink F, Wong-Leung J (2013) Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat Mater 12:821–826

    Article  CAS  Google Scholar 

  2. Si RJ, Li TY, Sun J, Wang J, Wang ST, Zhu GB, Wang CC (2019) Humidity sensing behavior and its influence on the dielectric properties of (In plus Nb) co-doped TiO2 ceramics. J Mater Sci 54:14645–14653. https://doi.org/10.1007/s10853-019-03945-3

    Article  CAS  Google Scholar 

  3. Zhao LL, Wang J, Gai ZG, Li JC, Liu J, Wang JY, Wang CL, Wang XL (2019) Annealing effects on the structural and dielectric properties of (Nb plus In) co-doped rutile TiO2 ceramics. RSC Adv 9:8364–8368

    Article  CAS  Google Scholar 

  4. Li TY, Rj Si, Wang J, Wang ST, Sun J, Wang CC (2019) Microstructure, colossal permittivity, and humidity sensitivity of (Na, Nb) co-doped rutile TiO2 ceramics. J Am Ceram Soc 102:6688–6696

    Article  CAS  Google Scholar 

  5. Li WL, Liu ZF, Zhang FQ, Sun QB, Liu Y, Li YX (2019) Colossal permittivity of (Li, Nb) co-doped TiO2 ceramics. Ceram Int 45:11920–11926

    Article  CAS  Google Scholar 

  6. Peng H, Liang PF, Wu D, Zhou XB, Peng ZH, Xiang YC, Chao XL, Yang ZP (2019) Simultaneous realization of broad temperature stability range and outstanding dielectric performance in (Ag+, Ta5+) co-doped TiO2 ceramics. J Alloy Compd 783:423–427

    Article  CAS  Google Scholar 

  7. Fan JT, Leng SL, Cao ZZ, He WY, Gao YF, Liu JR, Li GR (2019) Colossal permittivity of Sb and Ga co-doped rutile TiO2 ceramics. Ceram Int 45:10001–11010

    Google Scholar 

  8. Wang Z, Chen HN, Wang T, Xiao YJ, Nia WW, Fan JH (2018) Enhanced relative permittivity in niobium and europium co-doped TiO2 ceramics. J Eur Ceram Soc 38:3847–3852

    Article  CAS  Google Scholar 

  9. Yu Y, Zhao Y, Zhang TD, Song RX, Zhang YL, Qiao YL, Li WL, Fei WD (2018) Low dielectric loss induced by coupling effects of donor-acceptor ions in (Nb + Al) co-doped rutile TiO2 colossal permittivity ceramics. Ceram Int 44:6866–6871

    Article  CAS  Google Scholar 

  10. Zhao XG, Liu P (2017) Effects of sintering atmosphere on microstructure and dielectric properties of (Yb + Nb) co-doped rutile TiO2 ceramics. J Alloys Compd 715:170–175

    Article  CAS  Google Scholar 

  11. Cheng X, Li ZW, Wu JG (2015) Colossal permittivity in ceramics of TiO2 co-doped with niobium and trivalent cation. J Mater Chem A 3:5805–5810

    Article  CAS  Google Scholar 

  12. Nachaithong T, Thongbai P, Maensiri S (2017) Colossal permittivity in (In1/2Nb1/2)xTi1-xO2 ceramics prepared by a glycine nitrate process. J Eur Ceram Soc 37:655–660

    Article  CAS  Google Scholar 

  13. Li JL, Li F, Li C, Yang G, Xu Z, Zhang S (2015) Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics. Sci Rep 5, 8295

    Article  CAS  Google Scholar 

  14. Song YL, Wang XJ, Sui Y, Liu Z, Zhang Y, Zhan H, Song B, Liu Z, Lv Z, Tao L, Tang J (2016) Origin of colossal dielectric permittivity of rutile Ti0.9In0.05Nb0.05O2: single crystal and polycrystalline. Sci Rep 6, 21478

    Article  CAS  Google Scholar 

  15. Dong W, Hu WB, Berlie A, Lau K, Chen H, Withers RL, Liu Y (2015) Colossal dielectric behavior of Ga plus Nb co-doped rutile TiO2. ACS Appl Mater Interfaces 7:25321–25325

    Article  CAS  Google Scholar 

  16. Tuichai W, Danwittayakul S, Chanlek N, Srepusharawoot P, Thongbai P, Maensiri S (2017) Origin(s) of the apparent colossal permittivity in (In1/2Nb1/2)xTi1-xO2: clarification on the strongly induced Maxwell–Wagner polarization relaxation by DC bias. RSC Adv 7:95–105

    Article  CAS  Google Scholar 

  17. Nachaithong T, Kidkhunthod P, Thongbai P, Maensiri S (2017) Surface barrier layer effect in (In plus Nb) co-doped TiO2 ceramics: an alternative route to design low dielectric loss. J Am Ceram Soc 100:1452–1459

    Article  CAS  Google Scholar 

  18. Tuichai W, Thongyong N, Danwittayakul S, Chanlek N, Srepusharawoot P, Thongbai P, Maensiri S (2017) Very low dielectric loss and giant dielectric response with excellent temperature stability of Ga3+ and Ta5+ co-doped rutile-TiO2 ceramics. Mater Des 123:15–23

    Article  CAS  Google Scholar 

  19. Li JL, Li F, Xu Z, Zhuang YY, Zhang SJ (2015) Nonlinear I-V behavior in colossal permittivity ceramic:(Nb plus In) co-doped rutile TiO2. Ceram Int 41:S798–S803

    Article  CAS  Google Scholar 

  20. Yu JG, Low JX, Xiao W, Zhou P, Jaroniec M (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed 001 and 101 facets. J Am Chem Soc 136:8839–8842

    Article  CAS  Google Scholar 

  21. Li YX, Zeng JT, Jing XZ, Yin QR (2008) A novel technique for preparation of grain oriented BLSF piezoelectric ceramics. J Electroceram 21:314–318

    Article  CAS  Google Scholar 

  22. Li XH, Xu L, Liu LX, Wang Y, Cao XX, Huang YJ, Meng CM, Wang ZG (2014) High pressure treated ZnO ceramics towards giant dielectric constants. J Mater Chem A 2:16740–16745

    Article  CAS  Google Scholar 

  23. Takenaka T, Sakata K (1980) Grain orientation and electrical properties of hot-forged Bi4Ti3O12 ceramics. Jpn J Appl Phys 19:31–39

    Article  CAS  Google Scholar 

  24. Kimura T, Yoshimoto T, Iida N, Fujita Y, Yamaguchi T (1989) Mechanism of grain orientation during hot-pressing of bismuth titanate. J Am Ceram Soc 72:85–89

    Article  CAS  Google Scholar 

  25. Takeuchi T, Tani T, Saito Y (1999) Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method. Jpn J Appl Phys 38:5553–5556

    Article  CAS  Google Scholar 

  26. Horn JA, Zhang SC, Selvaraj U, Messing GL, Torlier-Mckinstry S (1999) Templated grain growth of textured bismuth titanate. J Am Ceram Soc 82:921–926

    Article  CAS  Google Scholar 

  27. Wang GJ, Li ZC, Li MY, Liao JC, Chen CH, Lv SS, Shi CQ (2015) Enhanced field-emission of silver nanoparticle-graphene oxide decorated ZnO nanowire arrays. Phys Chem Chem Phys 17:31822–31829

    Article  CAS  Google Scholar 

  28. Kuchařík J, Sopha H, Krbal M, Rychetský I, Kužel P, Macak JM, Němec H (2018) Photoconductive, dielectric and percolation properties of anodic TiO2 nanotubes studied by terahertz spectroscopy. J Phys D Appl Phys 51, 014004

    Article  CAS  Google Scholar 

  29. Cao LZ, Fu WY, Wang SF, Wang Q, Sun ZH, Yang H, Cheng BL, Wang H, Zhou YL (2007) Effects of film thickness and preferred orientation on the dielectric properties of (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 films. J Phys D Appl Phys 40:2906–2910

    Article  CAS  Google Scholar 

  30. Kim YH, Osada M, Dong L, Kim HJ, Sasaki T (2015) High-temperature dielectric responses of molecularly-thin titania nanosheet. J Ceram Soc Jpn 123:335–339

    Article  CAS  Google Scholar 

  31. Febvrier AL, Députier S, Demange V, Bouquet V, Galca AC, Iuga A, Pintilie L, Guilloux-Viry M (2017) Effect of in-plane ordering on dielectric properties of highly {111}-oriented bismuth-zinc-niobate thin films. J Mater Sci 52:11306–11313. https://doi.org/10.1007/s10853-017-1297-x

    Article  CAS  Google Scholar 

  32. Wang CC, Zhang N, Li QJ, Yu Y, Zhang J, Li YD, Wang H (2015) Dielectric relaxations in rutile TiO2. J Am Ceram Soc 98:148–153

    Article  CAS  Google Scholar 

  33. Singh NB, Schreib B, Devilbiss M, Loiacono J, Arnold B, Choa FS, Mandal KD (2016) Low temperature processing of dielectric perovskites for energy storage. In: Proceedings of SPIE 9865, Energy harvesting and storage: materials, devices, and applications VII, 13 July: 986509. https://doi.org/10.1117/12.2220059

  34. Razdan V, Singh A, Arnold B, Choa FS, Kelly L, Singh NB (2015) Effect of organic flux on the colossal dielectric constant of CaCu3Ti4O12 (CCTO). In: Proceedings of SPIE 9493, Energy harvesting and storage: materials, devices, and applications VI, 18 May: 949308. https://doi.org/10.1117/12.2177694

  35. Singh NB, Berghmans A, King M, Knuteson D, Talvacchio JT, Kahler D, House M, Schreib B, Wagner B, McLaughlin S (2013) Modification of interface anisotropy and its effect on microstructural evolution during ostwald ripening. Cryst Res Technol 48:983–988

    Article  CAS  Google Scholar 

  36. Ni W, Ye JL, Guo YM, Cheng C, Lin ZQ, Li YD, Wang H, Yu Y, Li QJ, Huang SG, Shao ZP, Wang CC (2017) Decisive role of mixed-valence structure in colossal dielectric constant of LaFeO3. J Am Ceram Soc 100:3042–3049

    Article  CAS  Google Scholar 

  37. Wang CC, Lu HB, Jin KJ, Yang GZ (2008) Temperature-dependent dielectric strength of a Maxwell–Wagner type relaxation. Mod Phys Lett B 22:1297–1305

    Article  CAS  Google Scholar 

  38. Li JL, Li F, Zhu XH, Lin DB, Li QF, Liu WH, Xu Z (2017) Colossal dielectric permittivity in hydrogen-reduced rutile TiO2 crystals. J Alloys Compd 692:375–380

    Article  CAS  Google Scholar 

  39. Hurlen T (1959) On the defect structure of rutile. Acta Chem Scand 13:365–376

    Article  CAS  Google Scholar 

  40. Yahia J (1963) Dependence of the electrical conductivity and thermoelectric power of pure and aluminum-doped rutile on equilibrium oxygen pressure and temperature. Phys Rev 130:1711–1719

    Article  CAS  Google Scholar 

  41. Liu LN, Wang CC, Zhang DM, Zhang QL, Wang KJ, Wang J, Sun XH (2014) Dielectric relaxations and phase transition in laser crystals Gd2SiO5 and Yb-doped Gd2SiO5. J Am Ceram Soc 97:1823–1828

    Article  CAS  Google Scholar 

  42. Tong L, Sun J, Wang ST, Guo YM, Li QJ, Wang H, Wang CC (2017) Normal and abnormal dielectric relaxation behavior in KTaO3 ceramics. RSC Adv 7:50680–50687

    Article  CAS  Google Scholar 

  43. Zhao X, Chen XD, Yu X, Ding X, Yu XL, Tang K (2019) High sensitivity humidity sensor and its application in nondestructive testing for wet paper. Sens Actuator B Chem 301, 127048

    Article  CAS  Google Scholar 

  44. Sinclair DC, West AR (1989) Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature-coefficient of resistance. J Appl Phys 66:3850–3856

    Article  CAS  Google Scholar 

  45. Li TY, Si RJ, Sun J, Wang ST, Wang J, Ahmed R, Zhu GB, Wang CC (2019) Giant and controllable humidity sensitivity achieved in (Na plus Nb) co-doped rutile TiO2. Sens Actuator B Chem 293:151–158

    Article  CAS  Google Scholar 

  46. Nikolic MV, Lukovic MD, Labus NJ (2019) Influence of humidity on complex impedance and dielectric properties of iron manganite (FeMnO3). J Mater Sci Mater Electron 30:12399–12405

    Article  CAS  Google Scholar 

  47. Agmon N (1995) The Grotthuss mechanism. Chem Phys Lett 244:456–462

    Article  CAS  Google Scholar 

  48. Wang J, Guo YM, Wang ST, Tong L, Sun J, Zhu GB, Wang CC (2019) The effect of humidity on the dielectric properties of (In plus Nb) co-doped SnO2 ceramics. J Eur Ceram Soc 39:323–329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51872001 and 51502001) and the Fundamental Research Funds for the Central University (Nos. XDJK2018C003 and lzujbky-2019-23). The authors would like to thank Shiyanjia Lab (www.shiyanjia.com) for the support of TEM test.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guojing Wang or Chunchang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wang, C., Zheng, J. et al. Colossal and anomalous dielectric behavior in grain-oriented TiO2. J Mater Sci 55, 3940–3950 (2020). https://doi.org/10.1007/s10853-019-04283-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04283-0

Navigation