Skip to main content
Log in

Contamination of TiO2 thin films spin coated on borosilicate and rutile substrates

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

A Correction to this article was published on 10 September 2021

This article has been updated

Abstract

The present work reports data for TiO2 thin films on borosilicate glass and (001) single-crystal TiO2, annealed at 200–550 °C for 8 h. Characterization included GAXRD, laser Raman microspectroscopy, AFM, UV–Vis, XPS, SIMS, TEM, ellipsometry, and methylene blue (MB) dye degradation. The substrate determined the TiO2 polymorph that formed, while the annealing temperature and boron contamination from the substrate determined most of the associated properties. The films on glass substrates were amorphous following annealing at 200 °C but were anatase at higher temperatures. The films on rutile exhibited epitaxial growth at all annealing temperatures. Annealing caused diffusion of glass component elements into the films and counterdiffusion of Ti into the glass substrates. Since aqueous MB testing caused decreased glass ion concentrations, the diffusion mechanism is via the grain boundaries. Volatilization of boron occurred during annealing at 550 °C. The morphological features dominated the optical properties; the anatase films exhibited high transmissions and low reflectances, while the rutile films exhibited the converse. The band gap decreased slightly with increasing annealing temperatures, reflecting increasing crystallinity. The refractive indices showed an anomalous trend of decrease with increasing annealing temperature and associated crystallinity; this is attributed to the effects of boron volatilization and associated air-filled pore formation. Although the anatase films outperformed the rutile films, the effect of annealing temperature is likely to have been dominant in that it determined the relative extents of crystallinity, grain size, RMS roughness, optical indirect band gap, and oxygen vacancy concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Change history

References

  1. Hashimoto K, Irie H, Fujishima H (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44:8269–8285

    Article  CAS  Google Scholar 

  2. Greenwood N, Earnshaw A (1984) Chemistry of the elements. Butterworth Heinemann, Burlington

    Google Scholar 

  3. Jamieson JC, Olinger B (1969) Pressure temperature studies of anatase, brookite, rutile and TiO2 II: a discussion. Am Miner 54:1477–1481

    Google Scholar 

  4. Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874. https://doi.org/10.1007/s10853-010-5113-0

    Article  CAS  Google Scholar 

  5. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  6. Muggli DS, Ding L (2001) Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics. Appl Catal B 32:181–194

    Article  CAS  Google Scholar 

  7. Bessekhouad Y, Robert D, Weber JV (2003) Preparation of TiO2 nanoparticles by sol–gel route. Int J Photoenergy 5:153–158

    Article  CAS  Google Scholar 

  8. Amores JMG, Escribano UC, Busca G (1995) Anatase crystal growth and phase transformation to rutile in high-area TiO2, MoO3-TiO2 and other TiO2-supported oxide catalytic systems. J Mater Chem 5:1245–1249

    Article  Google Scholar 

  9. Che X, Li L, Zheng J, Li G, Shi Q (2016) Heat capacity and thermodynamic functions of brookite TiO2. J Chem Thermodyn 93:45–51

    Article  CAS  Google Scholar 

  10. Li JG, Ishigaki T (2004) Brookite → rutile phase transformation of TiO2 studied with monodispersed particles. Acta Mater 52:5143–5150

    Article  CAS  Google Scholar 

  11. Matthews RW (1987) Photooxidation of organic impurities in water using thin films of titanium dioxide. J Phys Chem 91:3328–3333

    Article  CAS  Google Scholar 

  12. Okamoto K, Yamamoto Y, Tanaka H, Tanaka M, Bull IA (1985) Heterogeneous photocatalytic decomposition of phenol over TiO2 powder. Chem Soc Jap 58:2015–2022

    Article  CAS  Google Scholar 

  13. Baram N, Starosvetsky D, Starosvetsky J, Epshtein M, Armon R, Ein-Eli Y (2007) Enhanced photo-efficiency of immobilized TiO2 catalyst via intense anodic bias. Electrochem Commun 9:1684–1688

    Article  CAS  Google Scholar 

  14. Fisher J, Egerton T (2001) titanium compounds, inorganic, Kirk-Othmer encyclopedia of chemical technology, https://www.ncbi.nlm.nih.gov/books/NBK326523/. Accessed 13 July 2001

  15. Beltrán A, Gracia L, Andrés J (2006) Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs. J Phys Chem B 100:23417–23423

    Article  CAS  Google Scholar 

  16. Gouma PI, Mills MJ (2001) Anatase-to-rutile transformation in titania powders. J Am Ceram Soc 84:619–622

    Article  CAS  Google Scholar 

  17. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor. Photocatal Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  18. Bansal NP, Doremus RH (1986) Handbook of glass properties. Academic Press, Orlando

    Google Scholar 

  19. Bittner A, Jahn R, Lobmann P (2001) TiO2 thin films on soda-lime and borosilicate glass prepared by sol–gel processing: influence of the substrates. J Sol Gel Sci Technol 58:400–406

    Article  CAS  Google Scholar 

  20. Gouttebaron R, Cornelissen D, Snyders R, Dauchot JP, Wautelet M, Hecq M (2000) XPS study of TiOx thin films prepared by dc magnetron sputtering in Ar–O2 gas mixtures. Surf Interface Anal 30:527–530

    Article  CAS  Google Scholar 

  21. Malagutti AR, Mourao HAJL, Garbin JR, Ribeiro C (2009) Deposition of TiO2 and Ag: TiO2 thin films by the polymeric precursor method and their application in the photodegradation of textile dyes. Appl Catal B 90:205–212

    Article  CAS  Google Scholar 

  22. Sarantopoulos C, Gleizes AN, Maury F (2009) Chemical vapor deposition and characterization of nitrogen doped TiO2 thin films on glass substrates. Thin Solid Films 518:1299–1303

    Article  CAS  Google Scholar 

  23. Battiston GA, Gerbasi R, Gregori A, Porchia M, Cattarin S, Rizzi GA (2000) PECVD of amoprhous TiO2 thin films: effect of growth temperature and plasma gas composition. Thin Solid Films 371:126–131

    Article  CAS  Google Scholar 

  24. Wang C, Wang T, Zheng S (2002) Investigation of the photoreactivity of nanocrystalline TiO2 thin film by ion-implantation technique. Phys E 14:242–248

    Article  CAS  Google Scholar 

  25. Choi H, Stathatos E, Dionysiou DD (2006) Sol–gel preparation of mesporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Appl Catal B 63:60–67

    Article  CAS  Google Scholar 

  26. Byrne JA, Eggins BR, Brown NMD, McKinney B, Rouse M (1998) Immobilisation of tio2 powder for the treatment of polluted water. Appl Catal B 17:25–36

    Article  CAS  Google Scholar 

  27. Pore V, Heilkkila M, Ritala M, Leskela M, Areva S (2006) Atomic layer deposition of TiO2−xNx thin films for photocatalytic applications. J Photochem Photobiol A 177:68–75

    Article  CAS  Google Scholar 

  28. Pore V, Ritala M, Leskela M, Areva S, Jarn M, Jarnstrom J (2007) H2S modified atomic layer deposition process for photocatalytic TiO2 thin films. J Mater Chem 17:1361–1371

    Article  CAS  Google Scholar 

  29. Kabir II, Sheppard LR, Liu R, Zhu Q, Chen WF, Koshy P, Sorrell CC (2018) Contamination of TiO2 thin films spin coated on rutile and fused silica substrates. Surf Coat Technol 354:369–382

    Article  CAS  Google Scholar 

  30. Klug HP, Alexander LE (1997) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  31. Mardare D, TascaM DM, Rusu M, Rusu GI (2000) On the structural properties and optical transmittance of TiO2 RF sputtered thin films. Appl Surf Sci 156:200–206

    Article  CAS  Google Scholar 

  32. López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J sol gel Sci Technol 61:1–7

    Article  CAS  Google Scholar 

  33. Blanckenhagen V, Tonova B, Ullmann D (2002) Application of the Tauc–Lorentz formulation to the interband absorption of optical coating materials. Appl Opt 41:3137–3141

    Article  Google Scholar 

  34. Mardare D, Hones P (1999) Optical dispersion analysis of TiO2 thin films based on variable-angle spectroscopic ellipsometry measurements. Mater Sci Eng B 68:42–47

    Article  Google Scholar 

  35. Mardare D, Valentin N, Teodorescu CM, Macovei D (2007) Fe-doped TiO2 thin films. Surf Sci 18:4479–4483

    Article  CAS  Google Scholar 

  36. Sankar S, Gopchandran KG (2009) Effect of annealing on the structural, electrical and optical properties of nanostructured TiO2 thin films. Cryst Res Technol J Exp Ind Crystallogr 44:989–994

    Article  CAS  Google Scholar 

  37. Depero LE, Bonzi P, Zocchi M, Casalec C, De Michele G (1993) Study of the anatase–rutile transformation in TiO2 powders obtained by laser-induced synthesis. J Mater Res 8:2709–2715

    Article  CAS  Google Scholar 

  38. Nakaruk A, Lin CY, Perera DS, Sorrell CC (2010) Effect of annealing temperature on titania thin films prepared by spin coating. J Sol Gel Sci Tech 55:328–334

    Article  CAS  Google Scholar 

  39. Nakaruk A, Lin CY, Channei D, Koshy P, Sorrell CC (2012) Fe-doped and Mn-doped titanium dioxide thin films. J Sol Gel Sci Tech 61:175–178

    Article  CAS  Google Scholar 

  40. Bellardita M, Di Paola A, Megna B, Palmisano L (2018) Determination of the crystallinity of TiO2 photocatalysts. J Photochem Photobiol A Chem 367:312–320

    Article  CAS  Google Scholar 

  41. Jensen H, Joensen KD, Jørgensen JE, Pedersen JS, Søgaard G (2004) Characterization of nanosized partly crystalline photocatalysts. J Nanopart Res 6:519–526

    Article  CAS  Google Scholar 

  42. Ragazzon D, Nakaruk A, Sorrell CC (2010) Deposition rate of anatase films by ultrasonic spray pyrolysis. Adv Appl Ceram 109:197–199

    Article  CAS  Google Scholar 

  43. Wagner CD (2000) NIST X-ray photoelectron spectroscopy database. NIST Standard Reference Database 20

  44. Chen SZ, Zhang PY, Zhu WP, Chen L, Xu SM (2006) Deactivation of TiO2 photocatalytic films loaded on aluminium: XPS and AFM analyses. Appl Surf Sci 252:7532–7538

    Article  CAS  Google Scholar 

  45. Chen WF, Koshy P, Sorrell CC (2015) Effect of intervalence charge transfer on photocatalytic performance of cobalt- and vanadium-codoped TiO2 thin films. Int J Hydrogen Energy 40:16215–16229

    Article  CAS  Google Scholar 

  46. Baelon P, Dequiedt AS, Mostefa-Sba H, Bourgeois S, Sibillot P, Sacilotti M (1998) SEM and XPS studies of titanium dioxide thin films grown by MOCVD. Thin Solid Films 322:63–67

    Article  Google Scholar 

  47. Panayotov DA, Yates JT (2005) Depletion of conduction band electrons in TiO2 by water chemisorption-IR spectroscopic studies of the independence of Ti–OH frequency on electron concentration. Chem Phys Lett 410:11–17

    Article  CAS  Google Scholar 

  48. Henderson MA (1999) Structural sensitivity in the dissociation of water on TiO2 single-crystal surfaces. Langmuir 12:5093–5098

    Article  Google Scholar 

  49. Lo WJ, Chung YW, Somorjai GA (1978) Electron spectroscopy studies of the chemisorption of O2, H2 and H2O on the TiO2(100) surfaces with varied stoichiometry: evidence for the photogeneration of Ti+3 and for its importance in chemisortion. Surf Sci 71:199–219

    Article  CAS  Google Scholar 

  50. Trapalis CH, Kozhukharov V, Samuneva B, Stefanov P (1993) Sol–gel processing of titanium-containing thin coatings. J Mater Sci 28:1276–1282. https://doi.org/10.1007/BF01191964

    Article  CAS  Google Scholar 

  51. Zhu S, Peng Y, Lin L, Fan CM, Gao GQ, Wang RX (2014) Stable blue TiO2−x nanoparticles for efficient visible light photocatalysts. J Mater Chem A 2:4429–4437

    Article  CAS  Google Scholar 

  52. Chretien S, Metiu H (2011) Electronic structure of partially reduced rutile TiO2(110) surface: where are the unpaired electrons located. J Phys Chem C 115:4696–4705

    Article  CAS  Google Scholar 

  53. Prasai B, Cai B, Underwood MK, Lewis JP, Drabold DA (2012) Properties of amorphous and crystalline titanium dioxide from first principles. J Mater Sci 12:7515–7521. https://doi.org/10.1007/s10853-012-6439-6

    Article  CAS  Google Scholar 

  54. Paza Y, Heller A (1997) Photo-oxidatively self-cleaning transparent titanium dioxide films on soda lime glass: the deleterious effect of sodium contamination and its prevention. J Mater Res 12:2759–2766

    Article  Google Scholar 

  55. Kingery WD (1974) Plausible concepts necessary and sufficient for interpretation of ceramic grain-boundary phenomena: I I, solute segregation, grain-boundary diffusion, and general discussion. J Am Ceram Soc 57:74–83

    Article  CAS  Google Scholar 

  56. Liu H, Yang W, Ma Y, Cao Y, Yao J, Zhang J, Hu T (2003) Synthesis and characterization of titania prepared by using a photoassisted sol–gel method. Langmuir 19:3001–3005

    Article  CAS  Google Scholar 

  57. He J, Behera RK, Finnis MW, Li X, Dickey EC, Philpot SR, Sinnott SB (2007) Prediction of high-temperature point defect formation in TiO2 from combination ab initio and thermodynamic calculations. Acta Mater 55:4325–4337

    Article  CAS  Google Scholar 

  58. Kitazawa SI, Choi Y, Yamamoto S, Yamaki T (2006) Rutile and anatase mixed crystal TiO2 thin films prepared by pulsed laser deposition. Thin Solid Films 515:1901–1904

    Article  CAS  Google Scholar 

  59. Averback RS (1986) Fundamental aspects of ion beam mixing. Nucl Instrum Methods Phys Res B 15:675–687

    Article  Google Scholar 

  60. Nastasi M (1994) Ion beam mixing in metallic and semiconductor materials. Mater Sci Eng R 12:1–52

    Article  Google Scholar 

  61. Graef MD, McHenry MC (2012) Structural of materials, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  62. Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York

    Google Scholar 

  63. Nakamura T, Tsutsumi N, Juni N, Fujii H (2005) Thin film waveguiding mode light extraction in organic electroluminescent device using high refractive index substrate. J Appl Sci 97:054505–054511

    Google Scholar 

  64. Lee JS, You KH, Park CB (2012) Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv Mater 24:1084–1088

    Article  CAS  Google Scholar 

  65. Mo SD, Ching WY (1995) Electronic and optical properties of three phases of titanium dioxide: rutile, anatase and brookite. Phys Rev E 51:13023–13032

    Article  CAS  Google Scholar 

  66. Chen JC, Haus A, Fan S, Villeneuve PR, Joannopoulos JD (1996) Optical filters from photonic band gap air bridges. J Light Technol 14:0733–8724

    Article  Google Scholar 

  67. Yablonovitch E (1993) Photonic band—gap structures. Opt Soc Am B 10:0740–3224

    Article  Google Scholar 

  68. Scalora M, Bloemer M, Pethel AS, Dowling JP, Bowden CM, Manka AS (1993) Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures. J Appl Phys 83:2377–2383

    Article  Google Scholar 

  69. In S, Orlov A, Berg R, Garcia F, Pedrosa-Jimenez S, Tikhov S, Wright DS, Lambert DS (2007) Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. J Am Chem Soc 129:13790–13791

    Article  CAS  Google Scholar 

  70. Chen D, Yang D, Wang Q, Jiang Z (2006) Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Ind Eng Chem Res 45:4110–4116

    Article  CAS  Google Scholar 

  71. Haimi E, Lipsonen H, Larismaa J, Kapulainen M, Krzak-Ros J, Hannula SP (2011) Optical and structural properties of nanocrystalline anatase (TiO2) thin films prepared by non-aqueous sol–gel dip-coating. Thin Solid Films 519:5882–5886

    Article  CAS  Google Scholar 

  72. Hadjoub I, Touam T, Chelouche A, Atoui A, Solard J, Chakaroun M, Peng LH (2016) Post-deposition annealing effect on RF-sputtered TiO2 thin-film properties for photonic applications. Appl Phys A 122:78–86

    Article  CAS  Google Scholar 

  73. Chassagnon R, Marty O, Moretti P, Urlacher C, Mugnier J (1997) Modification of sol–gel TiO2 planar waveguides by Xe+ irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 122:550–552

    Article  CAS  Google Scholar 

  74. Bahtat M, Mugnier J, Lou L, Serughetti L (1992) Planar TiO2 waveguides by the sol–gel process: the relationship of structure to properties. Sol Gel Opt II 1758:173–183

    Article  CAS  Google Scholar 

  75. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  76. Grzmil B, Marta B, Bogumił B, Krzysztof B (2011) Preparation and characterization of single-modified TiO2 for pigmentary applications. Ind Eng Chem Res 50:6535–6542

    Article  CAS  Google Scholar 

  77. Zhang W, Hu T, Yang B, Sun P, He H (2013) The effect of boron content on properties of B-TiO2 photocatalyst prepared by sol–gel method. J Adv Oxid Technol 16:261–267

    CAS  Google Scholar 

  78. Xu H, Picca RA, De Marco L, Carlucci C, Scrascia A, Papadia P, Scremin BF, Carlino E, Giannini C, Malitesta C, Mazzeo M (2013) Nonhydrolytic route to boron-doped TiO2 nanocrystals. Eur J Inorg Chem 3:64–374

    Google Scholar 

  79. Yuzheng W, Xiangxin X, He Y (2014) Synthesis and antimicrobial activity of boron-doped titania nano-materials. Chin J Chem Eng 22:474–479

    Article  CAS  Google Scholar 

  80. Monteverde F, Bellosi A (2003) Oxidation of ZrB2-based ceramics in dry air. J Electrochem Soc 150:B552–B559

    Article  CAS  Google Scholar 

  81. Vedam K, Schneider WC (1972) Variation of the refractive index of boric oxide glasses with hydrostatic pressure to 7 kbar. J Appl Phys 43:3623–3627

    Article  CAS  Google Scholar 

  82. Bönsch G, Potulski E (1998) Measruement of the refractive index of air and comparison with modified Edlén’s formulae. Metrologia 35:133–139

    Article  Google Scholar 

  83. Kirillova SA, Almjashev VI, Gusarov VV (2011) Phase relationships in the SiO2–TiO2 system. Russ J Inorg Chem 56:1464–1471

    Article  CAS  Google Scholar 

  84. Ricker RW, Hummel FA (1951) Reactions in the System TiO2–SiO2; revision of the phase diagram. J Am Ceram Soc 34:271–279

    Article  CAS  Google Scholar 

  85. http://www.crct.polymtl.ca/fact/documentation/FToxid/FToxid_Figs.htm

  86. Ghosh D, Subhas G (2013) Recent progress in Zr(Hf)B2 based ultrahigh temperature ceramics, handbook of advanced ceramics: materials, applications, processing, and properties, 2nd edn. Academic Press, Waltham, pp 267–300

    Google Scholar 

  87. Sequeira CAC (2019) High temperature corrosion: fundamentals and engineering. Wiley, Hoboken, pp 284–295

    Book  Google Scholar 

  88. Jacob KT, Gupta S (2009) Phase diagram of the system Ca–Ti–O at 1200 K. Bull Mater Sci 32:611–616

    Article  CAS  Google Scholar 

  89. Yoshikazu S, Shinoda Y (2011) Magnesium dititanate (MgTi2O5) with pseudobrookite structure: a review. Sci Technol Adv Mater 12:1–7

    Google Scholar 

  90. Nurfani E, Kurniawan R, Muhammady S, Marlina R, Sutjahja IM, Winata T, Darma Y (2011) Effect of Ta concentration on the refractive index of TiO2: Ta studied by spectroscopic ellipsometry. AIP Conf Proc 1725:020057–020062

    Article  Google Scholar 

  91. Forouhi AR, Bloomer I (1986) Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. Phys Rev B 34:7018–7029

    Article  CAS  Google Scholar 

  92. Mechiakh R, Sedrine NB, Chtourou R, Bensaha R (2010) correlation between microstructure and optical properties of nano-crystalline TiO2 thin films prepared by sol–gel dip coating. Appl Surf Sci 257:670–676

    Article  CAS  Google Scholar 

  93. Jellison JGE, Boatner LA, Budai JD, Jeong BS, Norton DP (2003) Spectroscopic ellipsometry of thin film and bulk anatase (TiO2). J Appl Phys 93:9537–9541

    Article  CAS  Google Scholar 

  94. Meng LJ, Dos Santos MP (2003) Investigations of titanium oxide films deposited by DC reactive magnetron sputtering in different sputtering pressures. Thin Solid Films 226:22–29

    Article  Google Scholar 

  95. Meng JM, Andritschky M, Dos Santos MP (1993) The effect of substrate temperature on the properties of DC reactive magnetron sputtered titanium oxide films. Thin Solid Films 223:242–247

    Article  CAS  Google Scholar 

  96. Valencia S, Marín JM, Restrepo JM (2009) Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol–gel method and a hydrothermal treatment. Open Mater Sci J 4:9–14

    Article  Google Scholar 

  97. Yamada Y, Kanemitsu Y (2012) Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals. Appl Phys Lett 101:133907

    Article  CAS  Google Scholar 

  98. Luttrell X, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2012) Why is anatase a better photocatalyst than rutile. Model studies on epitaxial TiO2 films. Sci Rep 4:1–8

    Google Scholar 

  99. Wang S, Pan L, Song JJ, Mi W, Zou JJ, Wang L, Zhang X (2015) Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J Am Chem Soc 137:2975–2983

    Article  CAS  Google Scholar 

  100. Kagan CR, Lifshitz E, Sargent EH, Talapin DV (2016) Building devices from colloidal quantum dots. Science 353(6302):5523–5533

    Article  CAS  Google Scholar 

  101. Kwong W, Savvides N, Sorrell C (2012) Electrodeposited nanostructured WO3 thin films for photoelectrochemical applications. Electrochim Acta 75:371–380

    Article  CAS  Google Scholar 

  102. Herve P, Vandamme LKJ (1994) General relation between refractive index and energy gap in semiconductors. Infrared Phys Technol 35:609–615

    Article  CAS  Google Scholar 

  103. Chu D, Younis A, Li S (2012) Direct growth of TiO2 nanotubes on transparent substrates and their resistive switching characteristics. J Phys D Appl Phys 45:355306–355310

    Article  CAS  Google Scholar 

  104. Mathews NR, Morales ER, Cortés-Jacome MA, Toledo Antonio JA (2009) TiO2 thin films—influence of annealing temperature on structural, optical and photocatalytic properties. Sol Energy 83:1499–1508

    Article  CAS  Google Scholar 

Download references

Funding

This project was not funded through a formalized research funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Kabir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, I.I., Sheppard, L.R., Shamiri, R. et al. Contamination of TiO2 thin films spin coated on borosilicate and rutile substrates. J Mater Sci 55, 3774–3794 (2020). https://doi.org/10.1007/s10853-019-04282-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04282-1

Navigation