Skip to main content
Log in

PVDF–ferrite composites with dual magneto-piezoelectric response for flexible electronics applications: synthesis and functional properties

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, a magnetodielectric flexible thick film composite with a quaternary Ba12Fe28Ti15O84 ferrite filler (≤ 9 vol%) embedded into PVDF polymer matrix was investigated. The role of filler volume on the macroscopic dielectric, magnetic and ferroelectric properties as well as on the nanoscale magnetic and piezoelectric response was analyzed. The formation of small amounts of polar phases besides the majority α-phase of PVDF was shown by XRD and FTIR combined analysis. The electrical properties are dominated by the polymer response, while magnetic order is derived as sum property from the ferrite ones, having a predominant soft magnetic character with small coercivity of Hc ~ 60 Oe and high saturation magnetization of Ms = 2.6 emu/g for the highest concentration of 9 vol%. Permittivity and losses slightly increase with ferrite filler addition, and the composite maintains a dielectric character for all the compositions. Local PFM and MFM investigations have shown a combined ferro/piezoelectric character and magnetic order, with magnetoelectric coupling demonstrated by the reorientation of filler particles and modifications of local piezoresponse when applying a static magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Cohen YB (2004) Electroactive polymer (EAP) actuators as artificial muscles. SPIE Press, Bellingham

    Google Scholar 

  2. Zhang QM, Bharti V, Zhao X (1998) Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280(5372):2101–2104

    Article  CAS  Google Scholar 

  3. Lu G, Li X, Jiang H, Mao X (1996) Electrical conductivity of carbon fibers/ABS resin composites mixed with carbon blacks. J Appl Polym Sci 62:2193–2199

    Article  CAS  Google Scholar 

  4. Nan CW (1993) Physics of inhomogeneous inorganic materials. Prog Mater Sci 37:1–116

    Article  CAS  Google Scholar 

  5. Das-Gupta DK (1994) Ferroelectric polymer and ceramic-polymer composites. Trans Tech. Publications, Aedermannsdorf

    Google Scholar 

  6. Tomer V, Manias E, Randall CA (2011) High field properties and energy storage in nanocomposite dielectrics of poly(vinylidene fluoride-hexafluoropropylene). J Appl Phys 110:044107

    Article  Google Scholar 

  7. Rahman MA, Chung G-S (2013) Synthesis of PVDF-graphene nanocomposites and their properties. J Alloys Compd 581:724–730

    Article  Google Scholar 

  8. Arbatti M, Shan X, Cheng Z-Y (2007) Ceramic-polymer composites with high dielectric constant. Adv Mater 19:1369–1372

    Article  CAS  Google Scholar 

  9. Patsidis A, Psarras GC (2008) Dielectric behavior and functionality of polymer matrix-ceramic BaTiO3 composites. eXPRESS Polym Lett 2(10):718–726

    Article  CAS  Google Scholar 

  10. Zhang QM, Li H, Poh M, Xia F, Cheng Z-Y, Xu H, Huang C (2002) An all-organic composite actuator material with a high dielectric constant. Nature 419:284–287

    Article  CAS  Google Scholar 

  11. Li JY, Zhang L (2007) Electric energy density of dielectric nanocomposites. Appl Phys Lett 90:132901

    Article  Google Scholar 

  12. Chinya I, Pal A, Sen S (2017) Polyglycolated zinc ferrite incorporated poly(vinylidene fluoride)(PVDF) composites with enhanced piezoelectric response. J Alloy Compd 722:829–838

    Article  CAS  Google Scholar 

  13. Behera C, Choudhary RNP, Das P (2017) Development of Ni-ferrite-based PVDF nanomultiferroics. J Electr Mater 46(10):6009–6022

    Article  CAS  Google Scholar 

  14. Yu Y, Ouyang C, Gao Y, Si Z, Chen W, Wang Z, Xue G (2005) Synthesis and characterization of carbon nanotube/polypyrrole core-shell nanocomposites via in situ inverse microemulsion. J Polym Sci Polym Chem 43:6105–6115

    Article  CAS  Google Scholar 

  15. Gogotsi Y (2006) Carbon nanomaterials. Taylor and Francis, New York, pp 77–148

    Book  Google Scholar 

  16. Yang C, Lin Y, Nan CW (2009) Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon 47:1096–1101

    Article  CAS  Google Scholar 

  17. Li M, Wondergem HJ, Spijkman M-J, Asadi K, Katsouras I, Blom PWM, de Leeuw DM (2013) Revisiting the delta-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films. Nat Mater 12(5):433–438

    Article  CAS  Google Scholar 

  18. Kabir E, Khatun M, Nasrin L, Raihan MJ, Rahman M (2017) Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites. J Phys D Appl Phys 50:163002

    Article  Google Scholar 

  19. Fukada E, Furukawa T (1981) Piezoelectricity and ferroelectricity in polyvinylidene fluoride. Ultrasonics 19(1):31–39

    Article  CAS  Google Scholar 

  20. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, proccesing and applications. Prog Polym Sci 39:683–706

    Article  CAS  Google Scholar 

  21. Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv 7:15382–15389

    Article  CAS  Google Scholar 

  22. Grey IE, Collomb AE, Obradors X (1991) The crystal structure of a new quaternary ferrite: Ba12Fe28Ti15O84. J Solid State Chem 91:131

    Article  CAS  Google Scholar 

  23. Curecheriu LP, Buscaglia MT, Ianculescu AC, Frunza RC, Ciuchi IV, Neagu A, Apachitei G, Bassano A, Canu G, Postolache P, Mitoseriu L, Buscaglia V (2011) Magnetic and dielectric properties of Ba12Fe28Ti15O84 layered ferrite ceramics. J Phys D Appl Phys 44:435002

    Article  Google Scholar 

  24. González N, Tomara GN, Psarras GC, Riba J-R, Armelin E (2017) Dielectric response of vulcanized natural rubber containing BaTiO3 filler: the role of particle functionalization. Eur Polym J 97:57–67

    Article  Google Scholar 

  25. Liu S, Xue S, Zhang W, Zhai J, Chen G (2014) Significantly enhanced dielectric property in PVDF nanocomposites flexible films through a small loading of surface-hydroxylated Ba0.6Sr0.4TiO3 nanotubes. J Mater Chem A 2:18040–18046

    Article  CAS  Google Scholar 

  26. Supriya S, Kumar L, Kar M (2019) Optimization of dielectric properties of PVDF-CFO nanocomposites. Polym Compos 40:1239–1250

    Article  CAS  Google Scholar 

  27. Kumar S, Supriya S, Kar M (2018) Enhancement of dielectric constant in polymer-ceramic nanocomposite for flexible electronics and energy storage applications. Compos Sci Technol 157:48–56

    Article  CAS  Google Scholar 

  28. Jaleh B, Sodagar S, Momeni A, Jabbari A (2016) Nanodiamond particles/PVDF nanocomposites flexible films: thermal, mechanical and physical properties. Mater Res Express 3:085028

    Article  Google Scholar 

  29. Condurache O, Turcan I, Curecheriu L, Ciomaga C, Postolache P, Ciobanu G, Mitoseriu L (2017) Towards novel functional properties by interface reaction in mixtures of BaTiO3-Fe2O3 composite ceramics. Ceram Int 43:1098–1105

    Article  CAS  Google Scholar 

  30. Kojima H (1987) Fundamental properties of hexagonal ferrites with magnetoplumbite structure. In: Wohlfarth EP (ed) Handbook of ferromagnetic materials, chapter 5, vol 3. North-Holland, Amsterdam, pp 305–391

    Chapter  Google Scholar 

  31. Sasabe H, Saito S, Asahina M, Kakutani H (1969) Dielectric relaxations in poly(vinylidene fluoride). J Polym Sci Pol Phys 7:1283–1449

    Article  Google Scholar 

  32. Fu J, Hou Y, Zheng M, Wei Q, Zhu M, Yan H (2015) Improving dielectric properties of PVDF composites by employing surface modified strong polarized BaTiO3 particles derived by molten salt method. ACS Appl Mater Interfaces 7(44):24480–24491

    Article  CAS  Google Scholar 

  33. Samet M, Levchenko V, Boiteux G, Seytre G, Kallel A, Serghei A (2015) Electrode polarization vs. Maxwell–Wagner–Sillars interfacial polarization in dielectric spectra of materials: characteristic frequencies and scaling laws. J Chem Phys 142:194703

    Article  CAS  Google Scholar 

  34. Chanmal CV, Jog JP (2008) Dielectric relaxations in PVDF/BaTiO3 nanocomposites. eXPRESS Polym Lett 2(4):298–301

    Article  Google Scholar 

  35. Tuncer E, Wegener M, Gerhard-Multhaupt R (2005) Distribution of the relaxation times in α-phase polyvinylidene fluoride. J Non Cryst Solids 351:2917–2921

    Article  CAS  Google Scholar 

  36. Rekik H, Ghallabi Z, Royaud I, Arous M, Seytre G, Boiteux G, Kallel A (2013) Dielectric relaxation behavior in semicrystaline polyvinylidene fluoride (PVDF)/TiO2 nanocomposites. Compos Part B Eng 45:1199–1206

    Article  CAS  Google Scholar 

  37. Yu K, Wang H, Zhou Y, Bai Y, Niu Y (2013) Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications. J Appl Phys 113:034105

    Article  Google Scholar 

  38. Harrison JS, Ounaies Z (2002) Piezoelectric polymers. Encyclopedia of polymer science and technology. Wiley, New York, pp 474–498

    Google Scholar 

  39. Barrau S, Ferri A, Da Costa A, Defebvin J, Leroy S, Desfeux R, Lefebvre JM (2018) Nanoscale investigations of α- and γ-crystal phases in PVDF-based nanocomposites. ACS Appl Mater Interfaces 10(15):13092–13099

    Article  CAS  Google Scholar 

  40. Martins P, Costa CM, Benelmekki M, Botelho G, Lanceros-Méndez S (2012) On the origin of the electroactive poly(vinylidene fluoride) β-phase nucleation by ferrite nanoparticles via surface electrostatic interactions. CrystEngComm 14:2807–2908

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Romanian UEFISCDI PN-III-P4-ID-PCCF-2016-0175 Grant (HighKDevice).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicia Gheorghiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheorghiu, F., Stanculescu, R., Curecheriu, L. et al. PVDF–ferrite composites with dual magneto-piezoelectric response for flexible electronics applications: synthesis and functional properties. J Mater Sci 55, 3926–3939 (2020). https://doi.org/10.1007/s10853-019-04279-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04279-w

Navigation