Skip to main content
Log in

Relative humidity sensing properties of doped polyaniline-encased multiwall carbon nanotubes: wearable and flexible human respiration monitoring application

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Relative humidity (RH) sensors have been fabricated with polyaniline-encased multiwall carbon nanotube (MWCNT) matrix. MWCNT matrices were grown on oxidized Si substrates by catalytic chemical vapour deposition technique. The MWCNT matrices were made hydrophilic by acid treatment. The sensing properties of MWCNTs were improved by encasing the acid-treated MWCNT matrix with PANI. PANI was synthesized via in situ chemical oxidation technique using three acid dopants, named as 5-sulfosalicylic acid, 4-nitrobenzoic acid and hydrochloric acid (HCl). A growth time variation of the PANI was also performed from 1.5 to 2.5 h. The time-varying sensor resistance was recorded with RH change, and RH sensing properties of the corresponding sensors were investigated with the measured data. Doping variation exhibited that CNT–PANI sensor, fabricated with HCl dopant, showed the highest response (42.6% at 90% RH). Synthesis time variation of PANI from 1.5 to 2.5 h exhibited that with an increase in synthesis time, the sensor responsivities degraded from 42.6 to 19.5% at 90% RH. Excellent repeatability, linear response behaviour (R2 = 0.992), low hysteresis loss (± 2.68%) were exhibited by the fabricated RH sensing devices. A facile transfer technology was developed in order to transfer the MWCNT on PET substrate for fabrication of flexible RH sensor. A practical application on human respiration monitoring was demonstrated with the wearable and flexible RH sensors. The humidity sensing mechanism and electron transfer process were schematically explained with the aid of energy band diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Tatara T, Tsuzaki K (1997) An Apnea monitor using a rapid-response hygrometer. J Clin Monit 13:5–9

    Article  CAS  Google Scholar 

  2. Woollard M, Greaves I (2004) The ABC of community emergency care: 4 shortness of breath. Emerg Med J 21:341–350

    Article  CAS  Google Scholar 

  3. Oki Y, Kaneko M, Fujimoto Y, Sakai H, Misu S, Mitani Y, Yamaguchi T, Yasuda H, Ishikawa A (2016) Usefulness of the 6-minute walk test as a screening test for pulmonary arterial enlargement in COPD. Int J Chronic Obstr Pulm Dis 11:2869–2875

    Article  CAS  Google Scholar 

  4. Bayhan M, Kavasoglu N (2006) A study on the humidity sensing properties of ZnCr2O4–K2CrO4 ionic conductive ceramic sensor. Sens Actuators B 117:261–265

    Article  CAS  Google Scholar 

  5. Wang J, Wu FQ (2004) Humidity sensitivity of composite material of lanthanum ferrite/polymer quaternary acrylic resin. Sens Actuators B 99:586–591

    Article  CAS  Google Scholar 

  6. Cosentino IC, Muccillo ENS, Muccillo R (2007) The influence of Fe2O3 in the humidity sensor performance of ZrO2:TiO2-based porous ceramics. Mater Chem Phys 103:407–414

    Article  CAS  Google Scholar 

  7. Zhang DZ, Wang K, Tong J, Xia BK (2016) Layer-by-layer nano assembly fabrication and humidity sensing behaviors of multi-walled carbon nanotubes/polyelectrolyte hybrid film. J Nanosci Nanotechnol 16:6705–6710

    Article  CAS  Google Scholar 

  8. Zhang DZ, Chang HY, Li P, Liu RH, Xue QZ (2016) Fabrication and characterization of an ultra-sensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens Actuators B 225:233–240

    Article  CAS  Google Scholar 

  9. Zhang DZ, Sun Y, Li P, Zhang Y (2016) Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing. ACS Appl Mater Interfaces 8:14142–14149

    Article  CAS  Google Scholar 

  10. Sakai Y, Sadaoka Y, Matsuguchi M (1996) Humidity sensors based on polymer thin films. Sens Actuators B 35:85–90

    Article  CAS  Google Scholar 

  11. Su PG, Huang SC (2005) Humidity sensing and electrical properties of a composite material of SiO2 and poly-[3-(methacrylamino) propyl] trimethyl ammonium chloride. Sens Actuators B 105:170–175

    Article  CAS  Google Scholar 

  12. Li Y, Yang MJ, She Y (2005) Humidity sensitive properties of crosslinked and quaternized poly(4-vinylpyridine-co-butyl methacrylate). Sens Actuators B 107:252–257

    Article  CAS  Google Scholar 

  13. Parvatikar N, Jain S, Khasim S, Revansiddappa M, Bhoraskar SV, Prasad MVNA (2006) Electrical and humidity sensing properties of polyaniline/WO3 composites. Sens Actuators B 114:599–603

    Article  CAS  Google Scholar 

  14. Fei T, Jiang K, Liu S, Zhang T (2014) Humidity sensors based on Li-loaded nanoporous polymers. Sens Actuators B 190:523–528

    Article  CAS  Google Scholar 

  15. Li Y, Hong LJ, Chen YS, Wang HC, Lu X, Yang MJ (2007) Poly(4-vinylpyridine)/carbon black composite as a humidity sensor. Sens Actuators B 123:554–559

    Article  CAS  Google Scholar 

  16. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  17. Rahaman G, Najaf Z, Mehmood A, Bilal S, Shah AHA, Mian SA, Ali G (2019) An overview of the recent progress in the synthesis and applications of carbon nanotubes. J Carbon Res 5:3

    Article  CAS  Google Scholar 

  18. Cinke M, Li J, Chen B (2002) Pore structure of raw and purified HiPco single-walled carbon nanotubes. Chem Phys Lett 365:69–74

    Article  CAS  Google Scholar 

  19. Adu CKW, Sumanasekera GU, Pradhan BK, Romero HE, Eklund PC (2001) Carbon nanotubes: a thermoelectric nano-nose. Chem Phys Lett 337:31–35

    Article  CAS  Google Scholar 

  20. Zhao Q, Yuan Z, Duan Z, Jiang Y, Li X, Li Z, Tai H (2019) An ingenious strategy for improving humidity sensing properties of multiwalled carbon nanotubes via poly-l-lysine modification. Sens Actuators B 289:182–185

    Article  CAS  Google Scholar 

  21. Abdelhalim A, Winkler M, Loghin F, Zeiser C, Lugli P, Abdellah A (2015) A Highly sensitive and selective carbon nanotube-based gas sensor arrays functionalized with different metallic nanoparticles. Sens Actuators B 220:1288–1296

    Article  CAS  Google Scholar 

  22. Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811

    Article  CAS  Google Scholar 

  23. Dobbrow C, Schmidt AM (2012) Improvement of the oxidation stability of cobalt nanoparticles. Beilstein J Nanotechnol 3:75–81

    Article  CAS  Google Scholar 

  24. Fahmy B, Cormier SA (2009) Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 23:1365–1371

    Article  CAS  Google Scholar 

  25. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health Part A 41:2699–2711

    Article  CAS  Google Scholar 

  26. Qiang ZX, Hong YL, Meng T, Pu PY (2011) ZnO, TiO2, SiO2 and Al2O3 nanoparticles-induced toxic effects on human fetal lung fibroblasts. Biomed Environ Sci 24:661–669

    Google Scholar 

  27. Lu J, Park BJ, Kumar B, Castro M, Choi HJ, Feller JF (2010) Polyaniline nanoparticle–carbon nanotube hybrid network vapour sensors with switchable chemo-electrical polarity. Nanotechnology 21:255501

    Article  CAS  Google Scholar 

  28. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810

    Article  CAS  Google Scholar 

  29. Ghosh R, Kundu S, Majumder R, Roy S, Das S, Banerjee A, Guria U, Banerjee M, Bera MK, Subhedar KM, Chowdhury MP (2019) One-pot synthesis of multifunctional ZnO nanomaterials: study of superhydrophobicity and UV photosensing property. Appl Nanosci. https://doi.org/10.1007/s13204-019-00985-8

    Article  Google Scholar 

  30. Ramana GV, Srikanth VVSS, Padya B, Jain PK (2014) Carbon nanotube–polyaniline nanotube core–shell structures for electrochemical applications. Eur Polym J 57:137–142

    Article  CAS  Google Scholar 

  31. Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33:883–891

    Article  CAS  Google Scholar 

  32. Bachhav SG, Patil DR (2015) Synthesis and characterization of polyaniline-multiwalled carbon nanotube nanocomposites and its electrical percolation behaviour. Am J Mater Sci 5:90–95. https://doi.org/10.5923/j.materials.20150504.03

    Article  Google Scholar 

  33. Aymen M, Sami S, Ahmed S, Fethi G, Abdellatif BM (2013) Correlation between Raman spectroscopy and electrical conductivity of graphite/polyaniline composites reacted with hydrogen peroxide. J Phys D Appl Phys 46:335103

    Article  CAS  Google Scholar 

  34. Ibrahim KA (2017) Synthesis and characterization of polyaniline and poly (aniline-co-o-nitroaniline) using vibrational spectroscopy. Arab J Chem 10:S2668–S2674

    Article  CAS  Google Scholar 

  35. Chaudhari HR, Kelkar DS (1997) Investigation of structure and electrical conductivity in doped polyaniline. Polym Int 42:380–384

    Article  CAS  Google Scholar 

  36. Wu TM, Lin YW (2006) Doped polyaniline/multi-walled carbon nanotube composites: preparation, characterization and properties. Polymer 47:3576–3582

    Article  CAS  Google Scholar 

  37. Elnaggar EM, Kabel KI, Farag AA, Gamal AGA (2017) Comparative study on doping of polyaniline with graphene and multi-walled carbon nanotubes. J Nanostruct Chem 7:75–83

    Article  CAS  Google Scholar 

  38. Singh V, Mohan S, Singh G, Pandey PC, Prakash R (2008) Synthesis and characterization of polyaniline–carboxylated PVC composites: application in development of ammonia sensor. Sens Actuators B 132:99–106

    Article  CAS  Google Scholar 

  39. Amarnath CA, Palaniappan S (2005) Polyaniline doped by a new class of dopants, benzoic acid and substituted benzoic acid: synthesis and characterization. Polym Adv Technol 16:420–424

    Article  CAS  Google Scholar 

  40. Bernard MC, Goff HL (2006) Quantitative characterization of polyaniline films using Raman spectroscopy I: polaron lattice and bipolaron. Electrochim Acta 52:595–603

    Article  CAS  Google Scholar 

  41. Bedre MD, Salimath B, Sawle B, Lagashetty A, Venkataraman A (2009) Preparation and characterization of Pani and Pani-Ag nanocomposites via interfacial polymerization. Polym Compos 30:1668–1677

    Article  CAS  Google Scholar 

  42. Neoh KG, Pun MY, Tan KL (1995) Polyaniline treated with organic acids: doping characteristics and stability. Synth Met 73:209–215

    Article  CAS  Google Scholar 

  43. Saravanan S, Mathai CJ, Anantharaman MR, Venkatachalam S, Prabhakaran PV (2006) Investigations on the electrical and structural properties of polyaniline doped with camphor sulphonic acid. J Phys Chem Solids 67:1496–1501

    Article  CAS  Google Scholar 

  44. Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR (1998) Vogel’s text book of practical organic chemistry, 5th edn. Addison Wesley, London, p 1412

    Google Scholar 

  45. Zhang Y, Liu J, Zhang Y, Liu J, Duan Y (2017) Facile synthesis of hierarchical nanocomposites of aligned polyaniline nanorods on reduced graphene oxide nanosheets for microwave absorbing materials. RSC Adv 7:54031

    Article  CAS  Google Scholar 

  46. Gomes EC, Oliveira MAS (2012) Chemical polymerization of aniline in hydrochloric acid (HCl) and formic acid (HCOOH) media. Differences between the two synthesized polyanilines. Am J Polym Sci 2:5–13

    Article  CAS  Google Scholar 

  47. Qiu G, Zhu A, Zhang C (2017) Hierarchically structured carbon nanotube–polyaniline nanobrushes for corrosion protection over a wide pH range. RSC Adv 7:35330

    Article  CAS  Google Scholar 

  48. Ashokan S, Ponnuswamy V, Jayamurugan P, Chandrasekaran J, Subba Rao YV (2015) Influence of the counter ion on the properties of organic and inorganic acid doped polyaniline and their Schottky diodes. Superlattices Microstruct 85:282–293

    Article  CAS  Google Scholar 

  49. Wu Z, Chen X, Zhu S, Zhou Z, Yao Y, Quan W, Liu B (2013) Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens Actuators B 178:485–493

    Article  CAS  Google Scholar 

  50. Konyushenko EN, Stejskal J, Trchová M, Hradil J, Kovářová J, Prokeš J, Cieslar M, Hwang JY, Chen KH, Sapurina I (2006) Multi-wall carbon nanotubes coated with polyaniline. Polymer 47:5715–5723

    Article  CAS  Google Scholar 

  51. Guo Y, Li L, Zhao C, Song L, Wang B (2018) Humidity sensing properties of poly-vanadium-titanium acid combined with polyaniline grown in situ by electrochemical polymerization. Sens Actuators B 270:80–88

    Article  CAS  Google Scholar 

  52. Athawale AA, Kulkarni MV, Chabukswar VV (2002) Studies on chemically synthesized soluble acrylic acid doped polyaniline. Mater Chem Phys 73:106–110

    Article  CAS  Google Scholar 

  53. Xia H, Wang Q (2003) Preparation of conductive polyaniline/nanosilica particle composites through ultrasonic irradiation. J Appl Polym Sci 87:1811–1817

    Article  CAS  Google Scholar 

  54. Tauc J (1970) Optical properties of Solids. North-Holland, Amsterdam

    Google Scholar 

  55. Kundu S, Majumder R, Ghosh R, Chowdhury MP (2019) Superior positive relative humidity sensing properties of porous nanostructured Al:ZnO thin films deposited by jet-atomizer spray pyrolysis technique. J Mater Sci Mater Electron 30:4618–4625

    Article  CAS  Google Scholar 

  56. Aleksander T, Lauri L, Ivari K, Ilmar KA, Ivo L (2016) Acidity of strong acids in water and dimethyl sulfoxide. J Phys Chem A 120:3663–3669

    Article  CAS  Google Scholar 

  57. Jiang L, Gao L, Liu Y (2002) Adsorption of salicylic acid, 5-sulfosalicylic acid and Tiron at the alumina–water interface. Colloids Surf A Physicochem Eng Asp 211:165–172

    Article  CAS  Google Scholar 

  58. Perrin DD, Dempsey B, Serjeant EP (1981) pKa prediction for organic acids and bases. Chapman & Hall, London

    Book  Google Scholar 

  59. Sharma A, Mazumder K, Kumar Y, Shirage PM (2019) Synthesis and humidity sensing behaviour of Cu intercalated Bi2Se3 topological insulator single crystals. In: AIP conference proceedings, vol 2115, p 030407

  60. Zhu P, Liu Y, Fang Z, Kuang Y, Zhang Y, Peng C, Chen G (2019) A flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotubes composite film. Langmuir 35:4834–4842

    Article  CAS  Google Scholar 

  61. Li XZ, Liu SR, Guo Y (2016) Polyaniline-intercalated layered double hydroxides: synthesis and properties for humidity sensing. RSC Adv 6:63099–63106

    Article  CAS  Google Scholar 

  62. Folke M, Cernerud L, Ekstrom M, Hök B (2003) Critical review of non-invasive respiratory monitoring in medical care. Med Biol Eng Comput 41:377–383

    Article  CAS  Google Scholar 

  63. Zhao Y, Zhang W, Yang B, Liu J, Chen X, Wang X, Yang C (2017) Gas-sensing enhancement methods for hydrothermal synthesized SnO2-based sensors. Nanotechnology 28:2002

    Article  CAS  Google Scholar 

  64. Xia J, Liu Y, Qiu X, Mao Y, He J, Chen L (2012) Solvothermal synthesis of nanostructured CuInS2 thin films on FTO substrates and their photoelectrochemical properties. Mater Chem Phys 136:823–830

    Article  CAS  Google Scholar 

  65. Eslamian M, Kordshuli FS (2018) Development of multiple-droplet drop-casting method for the fabrication of coatings and thin solid films. J Coat Technol Res 15:271–280

    Article  CAS  Google Scholar 

  66. Majumder R, Kundu S, Ghosh R, Roy S, Guria U, Chowdhury MP (2019) Self-doped SnO2:F synthesis by aerosol-spray deposition technique and their application in relative humidity sensor devices. Appl Nanosci. https://doi.org/10.1007/s13204-019-01047-9

    Article  Google Scholar 

  67. Wu J, Sun YM, Wu Z, Li X, Wang N, Tao K, Wang GP (2019) Carbon nanocoil-based fast-response and flexible humidity sensor for multifunctional applications. ACS Appl Mater Interfaces 11:4242–4251

    Article  CAS  Google Scholar 

  68. Levy YP, Shifman E, Sivan I, Kalifa I, Chowdhury MP, Shtempluck O, Razin A, Kochetkov V, Yaish YE (2012) Water assisted gate induced temporal surface charge distribution probed by electrostatic force microscopy. J Appl Phys 112:084329

    Article  CAS  Google Scholar 

  69. Bulusheva LG, Sysoev VI, Lobiak EV, Fedoseeva YV, Makarova AA, Dubois M, Flahaut E, Okotrub AV (2019) Chlorinated holey double-walled carbon nanotubes for relative humidity sensors. Carbon 148:413–420

    Article  CAS  Google Scholar 

  70. Turkani VS, Narakathu BB, Maddipatla D, Bazuin BJ, Atashbar MZ (2018) A fully printed CNT based humidity sensor on flexible PET substrate. In: 17th International meeting on chemical sensors—IMCS 2018, pp 519–520. https://doi.org/10.5162/imcs2018/p1fw.5

  71. Cao CL, Hu CG, Fang L, Wang SX, Tian YS, Pan CY (2010) Humidity sensor based on multi-walled carbon nanotube thin films. J Nanomater 2011:707303. https://doi.org/10.1155/2011/707303

    Article  CAS  Google Scholar 

  72. Zhao H, Zhang T, Qi R, Dai J, Liu S, Fei T (2017) Drawn on paper: a reproducible humidity sensitive device by handwriting. ACS Appl Mater Interfaces 9:28002–28009

    Article  CAS  Google Scholar 

  73. Jung D, Han M, Lee GS (2014) Humidity-sensing characteristics of multi-walled carbon nanotube sheet. Mater Lett 122:281–284

    Article  CAS  Google Scholar 

  74. Han JW, Kim B, Li J, Meyyappan M (2012) Carbon nanotube based humidity sensor on cellulose paper. J Phys Chem C 116:22094–22097

    Article  CAS  Google Scholar 

  75. Zeng FW, Liu XX, Diamond D, Lau KT (2010) Humidity sensors based on polyaniline nanofibres. Sens Actuators B 143:530–534

    Article  CAS  Google Scholar 

  76. Nohria R, Khillan RK, Su Y, Dikshit R, Lvov Y, Varahramyan K (2006) Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly. Sens Actuators B 114:218–222

    Article  CAS  Google Scholar 

  77. Jain S, Chakane S, Samui AB, Krishnamurthy VN, Bhoraskar SV (2003) Humidity sensing with weak acid-doped polyaniline and its composites. Sens Actuators B 96:124–129

    Article  CAS  Google Scholar 

  78. Ryu H, Cho SJ, Kim B, Lim G (2014) A stretchable humidity sensor based on a wrinkled polyaniline nanostructure. RSC Adv 4:39767–39770

    Article  CAS  Google Scholar 

  79. Kumar R, Yadav BC (2016) Humidity sensing investigation on nanostructured polyaniline synthesized via chemical polymerization method. Mater Lett 167:300–302

    Article  CAS  Google Scholar 

  80. Ye M, He C, Iocozzia J, Liu X, Cui X, Meng X, Rager M, Hong X, Liu X, Lin Z (2017) Recent advances in interfacial engineering of perovskite solar cells. J Phys D Appl Phys 50:373002

    Article  CAS  Google Scholar 

  81. Su WS, Leung TC, Chan CT (2007) Work function of single-walled and multiwalled carbon nanotubes: first-principles study. Phys Rev B 76:235413

    Article  CAS  Google Scholar 

  82. Joulazadeh M, Navarchian AH (2014) A comparative study on humidity sensing performances of polyaniline and polypyrrole nanostructures. Adv Polym Technol. https://doi.org/10.1002/adv.21461

    Article  Google Scholar 

  83. Gao H, Lian K (2014) Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review. RSC Adv 4:33091

    Article  CAS  Google Scholar 

  84. Zhou Y, Qin ZY, Li L, Zhang Y, Wei YL, Wang LF, Zhu MF (2010) Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials. Electrochim Acta 55:3904–3908

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Department of Science and Technology (DST), India (DST SERB Grant No. EMR/2014/001001), for their financial support to the research. Further, the authors wish to gratefully acknowledge Dr. M. N. Dastur School of Materials Science and Engineering, IIEST, Shibpur, for providing the two characterization facilities UV–Vis and FTIR. The authors would also like to thank Dr. M. K. Bera, IIEST, Shibpur, for his advice and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Pal Chowdhury.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Majumder, R., Ghosh, R. et al. Relative humidity sensing properties of doped polyaniline-encased multiwall carbon nanotubes: wearable and flexible human respiration monitoring application. J Mater Sci 55, 3884–3901 (2020). https://doi.org/10.1007/s10853-019-04276-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04276-z

Navigation