Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber


Graphene-based efficient metasurface solar absorber is presented. Graphene monolayer sheet is integrated over silicon dioxide dielectric layer to improve the bandwidth and achieve maximum absorption in the visible region from 430 to 770 THz. Simulation results indicate that the average absorption of our graphene-based metasurface absorber is more than 84% in the visible range. The absorber C-shape metasurface top layer placed above the graphene sheet is made up of tungsten material, and bottom layer made up of tungsten material helps in absorbing incoming electromagnetic light. The resonance frequency can be tuned in a wide frequency range by changing different physical parameters of proposed absorbers design. The absorption efficiency results of the proposed design are also compared with previously published similar absorber design to show the improvement of absorption in the proposed design. The proposed design is useful for designing next-generation graphene-based sensors and photovoltaic devices. Purposed graphene-based metasurface absorber can be used as a basic building block of solar energy-harvesting photovoltaic devices.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8


  1. 1

    Zhang K, Hao L, Du M, Mi J, Wang JN, Meng JP (2017) A review of thermal stability and high temperature-induced ageing mechanisms of solar absorber coatings. Renew Sust Energy Rev 67:1282–1299

    CAS  Article  Google Scholar 

  2. 2

    Tang L, Wu B, Tang P, Liu M, Zhan X, Liu X, Liu Z (2019) Silicon nano-cavity coupled metallic-dielectric colloidal crystals for narrow-band absorbers. Opt Mater 91:58–61

    CAS  Article  Google Scholar 

  3. 3

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348

    CAS  Article  Google Scholar 

  4. 4

    Khan AD, Amin M (2017) Tunable Salisbury screen absorber using square lattice of plasmonic nanodisk. Plasmonics 12(2):257–262

    CAS  Article  Google Scholar 

  5. 5

    Hsieh LZ, Chau YFC, Lim CM, Lin MH, Huang HJ, Lin CT, Syafi’ie MIMN (2016) Metal nano-particles sizing by thermal annealing for the enhancement of surface plasmon effects in thin-film solar cells application. Opt Commun 370:85–90

    CAS  Article  Google Scholar 

  6. 6

    McSherry S, Burger T, Lenert A (2019) Effects of narrowband transport on near-field and far-field thermophotonic conversion. J Photonics Energy 9(3):032714

    CAS  Article  Google Scholar 

  7. 7

    Li Q, Li Z, Xiang X, Wang T, Yang H, Wang X et al (2019) Tunable perfect narrow-band absorber based on a metal-dielectric-metal structure. Coatings 9(6):393

    Article  Google Scholar 

  8. 8

    Cheng Y, Luo H, Chen F, Gong R (2019) Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency. OSA Contin 2(7):2113–2122

    Article  Google Scholar 

  9. 9

    Ullah H, Khan AD, Ullah A, Ullah I Noman M (2016) Plasmonic perfect absorber for solar cell applications. In: 2016 international conference on emerging technologies (ICET). IEEE, pp. 1–5

  10. 10

    Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High-performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):251104

    Article  Google Scholar 

  11. 11

    Kshetrimayum RS (2004) A brief intro to metamaterials. IEEE Potentials 23(5):44–46

    Article  Google Scholar 

  12. 12

    Dang PT, Le KQ, Lee J-H, Nguyen TK (2019) A designed broadband absorber based on ENZ mode incorporating plasmonic metasurfaces. Micromachines 10(10):673

    Article  Google Scholar 

  13. 13

    Nguyen TK, Dang PT, Park I, Le KQ (2017) Broadband THz radiation through tapered semiconductor grating on high-index substrate. J Opt Soc Am B 34(3):583–589

    CAS  Article  Google Scholar 

  14. 14

    Patel SK, Charola S, Parmar J, Ladumor M (2019) Broadband metasurface solar absorber in the visible and near-infrared region. Mater Res Lett 6(8).

    CAS  Article  Google Scholar 

  15. 15

    Katrodiya D, Jani C, Sorathiya V, Patel SK (2019) Metasurface based broadband solar absorber. Opt Mater 89:34–41

    CAS  Article  Google Scholar 

  16. 16

    Bagmanci M, Karaaslan M, Unal E, Akgol O, Bakır M, Sabah C (2019) Solar energy harvesting with ultra-broadband metamaterial absorber. Int J Mod Phys B 33:1950056

    Article  Google Scholar 

  17. 17

    Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162

    Article  Google Scholar 

  18. 18

    Parmar J, Patel SK, Ladumor M, Sorathiya V, Katrodiya D (2019) Graphene-silicon hybrid chirped-superstructure bragg gratings for far infrared frequency. Mater Res Lett 6(6):065606

    CAS  Google Scholar 

  19. 19

    Patel SK, Ladumor M, Sorathiya V, Guo T (2018) Graphene based tunable grating structure. Mater Res Lett 6(2):025602

    Google Scholar 

  20. 20

    Patel SK, Ladumor M, Parmar J, Guo T (2019) Graphene-based tunable reflector superstructure grating. Appl Phys A 125(8):574

    Article  Google Scholar 

  21. 21

    Chen M, Sun W, Cai J, Chang L, Xiao X (2017) Frequency-tunable terahertz absorbers based on graphene metasurface. Opt Commun 382:144–150

    CAS  Article  Google Scholar 

  22. 22

    Yao Y, Shankar R, Kats MA, Song Y, Kong J, Loncar M, Capasso F (2014) Electrically tunablemetasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett 14(11):6526–6532

    CAS  Article  Google Scholar 

  23. 23

    Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen ZX et al (2009) Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater 19(19):3077–3083

    CAS  Article  Google Scholar 

  24. 24

    Sang T, Gao J, Yin X, Qi H, Wang L, Jiao H (2019) Angle-insensitive broadband absorption enhancement of graphene using a multi-grooved metasurface. Nanoscale Res Lett 14(1):105

    Article  Google Scholar 

  25. 25

    Liu B, Tang C, Chen J, Xie N, Tang H, Zhu X, Park GS (2018) Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials. Nanoscale Res Lett 13(1):153

    Article  Google Scholar 

  26. 26

    Rufangura P, Sabah C (2017) Graphene-based wideband metamaterial absorber for solar cells application. J Nanophotonics 11(3):036008

    Article  Google Scholar 

  27. 27

    Lin H, Sturmberg BC, Lin KT, Yang Y, Zheng X, Chong TK et al (2019) A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat Photonics 13(4):270–276

    CAS  Article  Google Scholar 

  28. 28

    Patel SK, Charola S, Jani C, Ladumor M, Parmar J, Guo T (2019) Graphene-based highly efficient and broadband solar absorber. Opt Mater 96:109330

    CAS  Article  Google Scholar 

  29. 29

    Akimov YA, Koh WS (2010) Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21(23):235201

    Article  Google Scholar 

  30. 30

    Philipp HR (1997) Silicon dioxide(glass). In: Palik ED (ed) Handbook of optical constants of solids. Academic Press, Cambridge, pp 749–763

    Google Scholar 

  31. 31

    Palik ED (ed) (1998) Handbook of optical constants of solids, vol 3. Academic Press, Cambridge

    Google Scholar 

  32. 32

    Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. Appl Phys 103(6):064302

    Article  Google Scholar 

Download references


Authors would like to acknowledge the support provided by Marwadi University, Rajkot and Ton Duc Thang University, Vietnam for this research.

Author information



Corresponding author

Correspondence to Vigneswaran Dhasarathan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jadeja, R., Charola, S., Patel, S.K. et al. Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber. J Mater Sci 55, 3462–3469 (2020).

Download citation