Skip to main content

Advertisement

Log in

Controllable preparation of graphene-based film deposited on cemented carbides by chemical vapor deposition

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aim was to study the controllable preparation of graphene-based films on the cemented carbide with different cobalt content. The graphene-based film was deposited on the surface of cemented carbide by homemade chemical vapor deposition. Every film’s composition was analyzed by the Raman spectrum, and the influence of the cobalt content and methane flow rate on all kinds of film’s formation was studied, and the formation mechanism of the graphene-based film on cemented carbide surface was summarized. Multilayer graphene film or graphene and amorphous carbon mixed film could be generated by regulating the methane flow when the cobalt content of the cemented carbide is 8–20 wt%. The composition, content, and thickness of the graphene-based film are restricted by the methane flow rate and the cobalt’s content. Direct growth is the main cause of the formation of graphene coating; the infiltration and precipitation of carbon are the secondary cause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov S et al (2004) Electric field effect in atomically thin carbon films. Science. https://doi.org/10.1126/science.1102896

    Article  Google Scholar 

  2. Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended grapheme. Solid State Commun. https://doi.org/10.1016/j.ssc.2008.02.024

    Article  Google Scholar 

  3. Thongrattanasiri S, Koppens F, García de Abajo F (2012) Complete optical absorption in periodically patterned graphene. Phys Rev Lett. https://doi.org/10.1103/physrevlett.108.047401

    Article  Google Scholar 

  4. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett. https://doi.org/10.1021/nl0731872

    Article  Google Scholar 

  5. Wei W, Tian A, Jia F et al (2016) Green synthesis of GeO2/graphene composites as anode material for lithium-ion batteries with high capacity. RSC Adv. https://doi.org/10.1039/c6ra14819k

    Article  Google Scholar 

  6. Wei W, Fang-Fang J, Ke-Feng W et al (2017) SnS2/graphene nanocomposite:a high rate anode material for lithium ion battery. Chin Chem Lett 28:324–328

    Article  CAS  Google Scholar 

  7. Liu M, Yin X, Ulin-Avila E et al (2011) A graphene-based broadband optical modulator. Nature. https://doi.org/10.1038/nature10067

    Article  Google Scholar 

  8. Yan K, Fu L, Peng H et al (2013) Designed CVD growth of graphene via process engineering. Acc Chem Res. https://doi.org/10.1021/ar400057n

    Article  Google Scholar 

  9. Edwards RS, Coleman KS (2013) Graphene film growth on polycrystalline metals. Acc Chem Res. https://doi.org/10.1021/ar3001266

    Article  Google Scholar 

  10. Dimiev A, Kosynkin DV, Sinitskii A et al (2011) Layer-by-layer removal of graphene for device patterning. Science. https://doi.org/10.1126/science.1199183

    Article  Google Scholar 

  11. Lu X, Yu M, Huang H et al (1999) Tailoring graphite with the goal of achieving single sheets. Nanotechnology. https://doi.org/10.1088/0957-4484/10/3/308

    Article  Google Scholar 

  12. Van Bommel A, Crombeen J, Van Tooren A (1975) Leed and auger electron observations of the SiC(0001) surface. Surf Sci. https://doi.org/10.1016/0039-6028(75)90419-7

    Article  Google Scholar 

  13. Forbeaux I, Themlin JM, Charrier A, Thibaudau F et al (2000) Solid-state graphitization mechanisms of silicon carbide 6H–SiC polar faces. Appl Surf Sci. https://doi.org/10.1016/s0169-4332(00)00224-5

    Article  Google Scholar 

  14. Li N, Wang Z, Zhao K, Shi Z et al (2010) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon. https://doi.org/10.1016/j.carbon.2009.09.013

    Article  Google Scholar 

  15. Shen J, Hu Y, Shi M et al (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater. https://doi.org/10.1021/cm901247t

    Article  Google Scholar 

  16. Liu N, Fu L, Dai B et al (2011) Universal segregation growth approach to wafer-size graphene from non-noble metals. Nano Lett. https://doi.org/10.1021/nl103962a

    Article  Google Scholar 

  17. Cai J, Ruffieux P, Jaafar R et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature. https://doi.org/10.1038/nature09211

    Article  Google Scholar 

  18. Jürgen K, Böbel M, Günther S (2016) Suppressing graphene nucleation during CVD on polycrystalline Cu by controlling the carbon content of the support foils. Carbon. https://doi.org/10.1016/j.carbon.2015.09.048

    Article  Google Scholar 

  19. Chaitoglou S, Bertran E (2016) Control of the strain in chemical vapor deposition-grown graphene over Copper via H2 flow. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.6b07055

    Article  Google Scholar 

  20. Chaitoglou S, Bertran E (2017) Effect of temperature on graphene grown by chemical vapor deposition. J Mater Sci. https://doi.org/10.1007/s10853-017-1054-1

    Article  Google Scholar 

  21. Chaitoglou S, Bertran E (2016) Effect of pressure and hydrogen flow in nucleation density and morphology of graphene bidimensional crystals. Mater Res Express. https://doi.org/10.1088/2053-1591/3/7/075603

    Article  Google Scholar 

  22. Ziwei X, Tianying Y, Guiwu L et al (2015) Large scale atomistic simulation of single-layer graphene growth on Ni(111) surface: molecular dynamics simulation based on a new generation of carbon-metal potential. Nanoscale. https://doi.org/10.1039/c5nr06016h

    Article  Google Scholar 

  23. Salifairus MJ, Abd Hamid SB, Soga T et al (2016) Structural and optical properties of graphene from green carbon source via thermal chemical vapor deposition. J Mater Res. https://doi.org/10.1557/jmr.2016.200

    Article  Google Scholar 

  24. Kwon YH, Kumar S, Bae J et al (2018) CVD-graphene for low equivalent series resistance in rGO/CVD-graphene/Ni-based supercapacitors. Nanotechnology. https://doi.org/10.1088/1361-6528/aab236

    Article  Google Scholar 

  25. Zhiyu Z, Carnevali V, Jugovac M et al (2018) Graphene on nickel(100) micrograins: modulating the interface interaction by extended moiré superstructures. Carbon. https://doi.org/10.1016/j.carbon.2018.01.010

    Article  Google Scholar 

  26. Li X, Cai W, Colombo L et al (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. https://doi.org/10.1021/nl902515k

    Article  Google Scholar 

  27. Ye DX, Pimanpang S, Jezewski C et al (2005) Low temperature chemical vapor deposition of co thin films from Co2(CO)8. Thin Solid Films. https://doi.org/10.1016/j.tsf.2005.03.046

    Article  Google Scholar 

  28. Ramon ME, Gupta A, Corbet C et al (2011) Graphene field-effect transistors using large-area monolayer graphene grown by chemical vapor deposition on Co thin films. In: Device research conference. https://doi.org/10.1109/drc.2011.5994446

  29. Ago H, Ito Y, Mizuta N et al (2010) Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano. https://doi.org/10.1021/nn102519b

    Article  Google Scholar 

  30. Mehedi HA, Baudrillart B, Alloyeau D et al (2016) Synthesis of graphene by cobalt-catalyzed decomposition of methane in plasma-enhanced CVD: optimization of experimental parameters with taguchi method. J Appl Phys. https://doi.org/10.1063/1.4960692

    Article  Google Scholar 

  31. Jun Y, Wei T, Feng J et al (2012) One step synthesis of nanoparticles of cobalt in a graphitic shell anchored on graphene sheets. Carbon. https://doi.org/10.1016/j.co.2012.01.029

    Article  Google Scholar 

  32. Macháč P, Ondřej Hejna, Slepička P (2017) Graphene growth by transfer-free chemical vapour deposition on a cobalt layer. J Electr Eng Technol. https://doi.org/10.1515/jee-2017-0011

    Article  Google Scholar 

  33. Sein H, Ahmed W, Rego CA et al (2003) Chemical vapour deposition diamond coating on tungsten carbide dental cutting tools. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/15/39/019

    Article  Google Scholar 

  34. Qingquan T, Nan H, Bing Y et al (2017) Diamond/β-SiC film as adhesion-enhanced interlayer for top diamond coatings on cemented tungsten carbide substrate. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2017.06.005

    Article  Google Scholar 

  35. Seok KJ, Min PY, Ki BM et al (2018) Cutting performance of tungsten carbide tools coated with diamond thin films after etching for various times. Mod Phys Lett B. https://doi.org/10.1142/s0217984918502366

    Article  Google Scholar 

  36. Sahoo B, Chattopadhyay AK (2002) On effectiveness of various surface treatments on adhesion of HF-CVD diamond coating to tungsten carbide inserts. Diam Relat Mater. https://doi.org/10.1016/s0925-9635(02)00137-1

    Article  Google Scholar 

  37. Yunqi L (2017) Graphene: from basics to applications. Chemical Industry Press, Beijing, pp 2–27

    Google Scholar 

  38. Berman D, Erdemir A, Sumant AV (2013) Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon. https://doi.org/10.1016/j.co.2012.11.061

    Article  Google Scholar 

  39. Kim KS, Lee HJ, Lee C et al (2011) Chemical vapor deposition-grown graphene: the thinnest solid lubricant. ACS Nano. https://doi.org/10.1021/nn2011865

    Article  Google Scholar 

  40. Yan C, Kim KS, Lee SK et al (2012) Mechanical and environmental stability of polymer thin-film-coated graphene. ACS Nano. https://doi.org/10.1021/nn203923n

    Article  Google Scholar 

  41. Das A, Chakraborty B, Sood AK (2008) Raman spectroscopy of graphene on different substrates and influence of defects. Bull Mater Sci. https://doi.org/10.1007/s12034-008-0090-5

    Article  Google Scholar 

  42. Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B. https://doi.org/10.1103/physrevb.64.075414

    Article  Google Scholar 

  43. Xiangping C, Lili Z, Shanshan C (2015) Large area CVD growth of graphene. Synth Met. https://doi.org/10.1016/j.synthmet.2015.07.005

    Article  Google Scholar 

  44. Zeller P, Henß Ann-Kathrin, Weinl M et al (2016) Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction. Surf Sci. https://doi.org/10.1016/j.susc.2016.06.014

    Article  Google Scholar 

  45. Shumin W, Liang Q, Cuimei Z et al (2013) A growth mechanism for graphene deposited on polycrystalline Co film by plasma enhanced chemical vapor deposition. New J Chem. https://doi.org/10.1039/c3nj41136b

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports by the Key Science and Technology Program of Henan Province, China (Grant No. 192102210017), the National Natural Science Foundation of China (Grant No. 51505434), the Young Talents Lifting Project of Henan Province in 2019 (2019HYTP034), as well as the National Natural Science Foundation of China (Grant No. 51475222), and the Science Foundation of Luoyang Key Laboratory of Advanced Manufacturing and Cutting Tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Ren, E., Ma, J. et al. Controllable preparation of graphene-based film deposited on cemented carbides by chemical vapor deposition. J Mater Sci 55, 4251–4264 (2020). https://doi.org/10.1007/s10853-019-04268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04268-z

Navigation