The thermal conductivity of defected copper at finite temperatures

Abstract

Copper-based materials have been selected as heat-sink materials in some nuclear fusion reactors, where a great number of structural defects will be created due to the irradiation of energetic particles. In the practice of fusion reactors, an important issue is how the defects in copper heat-sink material affect its thermal transport property. However, there is no systematic study on the relation between thermal conductivity and the concentrations of various point defects in copper up to now. Our theoretical calculations show that the thermal conductivity (\( \kappa \)) of Cu is significantly reduced by the presence of vacancies, self-interstitial atoms, SIA–vacancy pairs and the doped impurity tungsten (W) at finite temperatures. Among these concerned point defects, the doped impurity W plays the strongest role in impeding the thermal transport of conduction electrons, and the presence of 4% W impurity in Cu leads to about 80% reduction in \( \kappa \) as compared to that of the defect-free Cu system (\( \kappa_{0} \)). Furthermore, it is revealed that during the cascade, the thermal transport property of Cu changes as the structural defects evolve, and the thermal transport of electrons is impeded significantly in the initial stages of cascade. In addition, our calculations show that the Wiedemann–Franz law is still valid in defected copper systems.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1

    Hazan E, Madar N, Parag M, Casian V, Ben-Yehuda O, Gelbstein Y (2015) Effective electronic mechanisms for optimizing the thermoelectric properties of GeTe-Rich alloys. Adv Electron Mater 1:1500228

    Google Scholar 

  2. 2

    Cohen I, Kaller M, Komisarchik G, Fuksa D, Gelbstein Y (2015) Enhancement of the thermoelectric properties of n-type PbTe by Na and Cl co-doping. J Mater Chem C 3:9559–9564

    CAS  Google Scholar 

  3. 3

    Guttmann GM, Dadon D, Gelbstein Y (2015) Electronic tuning of the transport properties of off-stoichiometric PbxSn1−xTe thermoelectric alloys by Bi2Te3 doping. J Appl Phys 118:065102

    Google Scholar 

  4. 4

    Sadia Y, Aminov Z, Mogilyansky D, Gelbstein Y (2016) Texture anisotropy of higher manganese silicide following arc-melting and hot-pressing. Intermetallics 68:71–77

    CAS  Google Scholar 

  5. 5

    Appel O, Gelbstein Y (2014) A comparison between the effects of Sb and Bi doping on the thermoelectric properties of the Ti0.3Zr0.35Hf0.35NiSn Half-Heusler, alloy. J Electron Mater 43:1976–1982

    CAS  Google Scholar 

  6. 6

    Mota F, Palermo I, Laces S, Molla J, Ibarra A (2017) Potential irradiation of Cu alloys and tungsten samples in DONES. Nucl Fusion 57:126056

    Google Scholar 

  7. 7

    Zinkle SJ (2015) Applicability of copper alloys for DEMO high heat flux components. Phys Scr 2016:014004

    Google Scholar 

  8. 8

    Federici G, Biel W, Gilbert MR, Kemp R, Taylor N, Wenninger R (2017) European DEMO design strategy and consequences for materials. Nucl Fusion 57:092002

    Google Scholar 

  9. 9

    Norajitra P (2008) Divertor conceptual designs for a fusion power plant. Fusion Eng Des 83:893–902

    CAS  Google Scholar 

  10. 10

    Tokitani M, Masuzaki S, Hiraoka Y (2015) Potential of copper alloys using a divertor heat sink in the helical reactor FFHR-d1 and their brazing properties with tungsten armor by using the typical candidate filler materials. Plasma Fusion Res 10:3405035

    Google Scholar 

  11. 11

    Phythian WJ, Stoller RE, Foreman AJE, Calder AF, Bacon DJ (1995) A comparison of displacement cascades in copper and iron by molecular dynamics and its application to microstructural evolution. J Nucl Mater 223:245–261

    CAS  Google Scholar 

  12. 12

    Nordlund K, Gao F (1999) Formation of stacking-fault tetrahedra in collision cascades. Appl Phys Lett 74:2720–2722

    CAS  Google Scholar 

  13. 13

    Li M, Zinkle SJ (2012) Physical and mechanical properties of copper and copper alloys. Compr Nucl Mater 4:667–690

    CAS  Google Scholar 

  14. 14

    Kohnert AA, Wirth BD, Capolungo L (2018) Modeling microstructural evolution in irradiated materials with cluster dynamics methods: a review. Comput Mater Sci 149:442–459

    CAS  Google Scholar 

  15. 15

    Rider JG, Foxon CTB (1967) An experimental determination of the electrical resistivity of dislocations in copper. Philos Mag 16:1133–1138

    CAS  Google Scholar 

  16. 16

    Blatt FJ (1955) Effect of point imperfections on the electrical properties of copper. I. Conductivity. Phys Rev 99:1708–1716

    CAS  Google Scholar 

  17. 17

    Overhauser AW, Gorman RL (1956) Resistivity of interstitial atoms and vacancies in copper. Phys Rev 102:676–681

    CAS  Google Scholar 

  18. 18

    Zinkle SJ (1988) Electrical resistivity of small dislocation loops in irradiated copper. J Phys F Met Phys 18:377–391

    CAS  Google Scholar 

  19. 19

    Jongenburger P (1953) The extra-resistivity owing to vacancies in copper. Phys Rev 90:710–711

    CAS  Google Scholar 

  20. 20

    Ueda Y, Schmid K, Balden M, Coenen JW, Loewenhoff Th, Ito A, Hasegawa A, Hardie C, Porton M, Gilbert M (2017) Baseline high heat flux and plasma facing materials for fusion. Nucl Fusion 57:092006

    Google Scholar 

  21. 21

    Cheng Z, Liu L, Xu S, Lu M, Wang X (2015) Temperature dependence of electrical and thermal conduction in single silver. Sci Rep 5:10718

    CAS  Google Scholar 

  22. 22

    Kiritani M, Yoshiie T, Kojima S, Satoh Y (1990) Recoil energy spectrum analysis and impact effect of cascade and subcascade in 14 MeV DT fusion neutron irradiated fcc metals. Radiat Effects Defects Solids 113:75–96

    CAS  Google Scholar 

  23. 23

    Cleri F, Rosato V (1993) Tight-binding potentials for transition metals and alloys. Phys Rev B 48:22–33

    CAS  Google Scholar 

  24. 24

    Slater JC, Koster GF (1954) Simplified LCAO method for the periodic potential problem. Phys Rev 94:1498–1524

    CAS  Google Scholar 

  25. 25

    Ding WY, He HY, Pan BC (2015) Development of a tight-binding model for Cu and its application to a Cu-heat-sink under irradiation. J Mater Sci 50:5684–5693. https://doi.org/10.1007/s10853-015-9097-7

    CAS  Article  Google Scholar 

  26. 26

    Ding WY, He HY, Pan BC (2016) Structural features and thermal properties of W/Cu compounds using tight-binding potential calculations. J Mater Sci 51:5948–5961. https://doi.org/10.1007/s10853-016-9896-5

    CAS  Article  Google Scholar 

  27. 27

    Chan TL, Yao YX, Wang CZ, Lu WC, Li J, Qian XF, Yip S, Ho KM (2007) Highly localized quasiatomic minimal basis orbitals for Mo from ab initio calculations. Phys Rev B 76:205119

    Google Scholar 

  28. 28

    Stojanovic N, Maithripala DHS, Berg JM, Holtz M (2010) Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the Wiedemann-Franz law. Phys Rev B 82:075418

    Google Scholar 

  29. 29

    Recoules V, Crocombette JP (2005) Ab initio determination of electrical and thermal conductivity of liquid aluminum. Phys Rev B 72:104202

    Google Scholar 

  30. 30

    Nomura K, MacDonald AH (2007) Quantum transport of massless dirac fermions. Phys Rev Lett 98:076602

    Google Scholar 

  31. 31

    He ZH, Ye XB, Ding WY, He HY, Shi QW, Pan BC (2019) An empirical law on the finite-size effects in electronic transport calculations of tungsten. AIP Adv 9:095047

    Google Scholar 

  32. 32

    Yuan SJ, Raedt HD, Katsnelson MI (2010) Modeling electronic structure and transport properties of graphene with resonant scattering centers. Phys Rev B 82:115448

    Google Scholar 

  33. 33

    Tuan DV (2015) Charge and spin transport in disordered graphene-based materials. Springer, New York

    Google Scholar 

  34. 34

    Sondheimer EH (1952) The mean free path of electrons in metals. Adv Phys 1(1):1–42

    Google Scholar 

  35. 35

    Triozon F, Roche S, Rubio A, Mayou D (2004) Electrical transport in carbon nanotubes: role of disorder and helical symmetries. Phys Rev B 69:121410

    Google Scholar 

  36. 36

    Radchenko TM, Shylau AA, Zozoulenko IV, Ferreira A (2013) Effect of charged line defects on conductivity in graphene: numerical Kubo and analytical Boltzmann approaches. Phys Rev B 87:195448

    Google Scholar 

  37. 37

    Roth J, Tsitrone E, Loarte A, Loarer Th, Counsell G, Neu R, Philipps V, Brezinsek S, Lehnen M, Coad P, Grisolia Ch, Schmid K, Krieger K, Kallenbach A, Lipschultz B, Doerner R, Causey R, Alimov V, Shu W, Ogorodnikova O, Kirschner A, Federici G, Kukushkin A (2009) Recent analysis of key plasma wall interactions issues for ITER. J Nucl Mater 390–391:1–9

    Google Scholar 

  38. 38

    Weber WJ, Duffy DM, Thomé L, Zhang Y (2015) The role of electronic energy loss in ion beam modification of materials. Curr Opin Solid State Mater Sci 19(1):1–11

    CAS  Google Scholar 

  39. 39

    Butterworth GJ (1985) Transmutation and activation effects in high-conductivity copper alloys exposed to a first wall fusion neutron flux. J Nucl Mater 135:160–172

    CAS  Google Scholar 

  40. 40

    Potter RJ, Dexter DL (1957) Resistivity of interstitials in copper. Phys Rev 108:677–682

    CAS  Google Scholar 

  41. 41

    Zhang HJ, Lee G, Cho K (2011) Thermal transport in graphene and effects of vacancy defects. Phys Rev B 84:115460

    Google Scholar 

  42. 42

    Feng H, Fang D, Xu Z (2011) Mechanical and thermal transport properties of graphene with defects. Appl Phys Lett 99:041901

    Google Scholar 

  43. 43

    Itoh Y, Takahashi M, Takano H (1996) Design of tungsten/copper graded composite for high heat flux components. Fusion Eng Des 31:279–289

    CAS  Google Scholar 

  44. 44

    Meechan CJ, Brinkman JA (1956) Electrical resistivity study of lattice defects introduced in copper by 1.25-Mev electron irradiation at 80 °K. Phys Rev 103:1193–1202

    CAS  Google Scholar 

  45. 45

    Linsmeier Ch, Rieth M, Aktaa J, Chikada T, Hoffmann A, Hoffmann J, Houben A, Kurishita H, Jin X, Li M, Litnovsky A, Matsuo S, von Müller A, Nikolic V, Palacios T, Pippan R, Qu D, Reiser J, Riesch J, Shikama T, Stieglitz R, Weber T, Wurster S, You JH, Zhou Z (2017) Development of advanced high heat flux and plasma-facing materials. Nucl Fusion 57:092007

    Google Scholar 

  46. 46

    Ye XB, Ding WY, He HY, Ding R, Chen JL, Pan BC (2018) An empirical law for the elastic moduli of component-segregated W/Cu compounds. J Alloys Compd 766:349–354

    CAS  Google Scholar 

  47. 47

    Mott NF (1969) Conduction in non-crystalline materials. Philos Mag 19:835–852

    CAS  Google Scholar 

  48. 48

    Jones W, March NH (1973) Theoretical solid state physics: perfect lattices in equilibrium. Wiley, London

    Google Scholar 

  49. 49

    Chester GV, Thellung A (1961) The law of Wiedemann and Franz. Proc Phys Soc 77:1005

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 11275191 and 11875247), and the National Magnetic Confinement Fusion Programs (Grant Nos. 2013GB107004 and 2018YFE0308102). The computational center of USTC is acknowledged for computational support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. C. Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2251 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ye, X.B., He, Z.H. & Pan, B.C. The thermal conductivity of defected copper at finite temperatures. J Mater Sci 55, 4453–4463 (2020). https://doi.org/10.1007/s10853-019-04267-0

Download citation