Skip to main content
Log in

Fabrication of tunable 1D rod-like and 3D yolk-like TiO2 hierarchical architectures for efficient photocatalysis

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

TiO2 has attracted significant interest owning to their excellent photocatalytic properties. However, controlled preparation of TiO2 with satisfactory morphology is still an urgent challenge in this field. In this work, tunable one-dimensional (1D) rod-like and three-dimensional (3D) yolk-like N-doped TiO2 hierarchical architectures were successfully fabricated by one-step solvothermal route. A comparative study on morphological, structural and optical behavior of 1D and 3D TiO2 is conducted by SEM, TEM, BET, XPS, UV–Vis DRS, photoelectrochemical and photodegradation experiments. The resultant N-doped TiO2 with specific surface area of 190.8 m2 g−1 and 166.6 m2 g−1 for rod-like structure and yolk-like structure, respectively, exhibited excellent photocatalytic performance using rhodamine B (RhB), methylene blue (MB) and phenol as the degraded pollutants under visible-light irradiation. Benefiting from the direct electrical path, multiple internal reflections of light and high specific surface area, the rod-like N-doped TiO2 possessed higher photocatalytic efficiency. Specifically, for rod-like N-doped TiO2, the reaction rate constant of the photodegradation for RhB, MB and phenol reached 12.1, 6.9 and 76.0 times, respectively, compared with P25. In comparison with yolk-like N-doped TiO2, the rate constant raised 1.5, 1.3 and 1.3 times. In addition, the formation mechanism of such controllable-morphology structure was also analyzed. This work suggests that the proper hierarchical structure combined with a large specific surface area plays a significant role on photocatalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Natarajan S, Bajaj HC, Tayade RJ (2018) Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J Environ Sci-China 65:201–222

    Google Scholar 

  2. Nakata K, Ochiai T, Murakami T, Fujishima A (2012) Photoenergy conversion with TiO2 photocatalysis: new materials and recent applications. Electrochim Acta 84:103–111

    CAS  Google Scholar 

  3. Liang HJ, Jia ZC, Zhang HC, Wang XB, Wang JJ (2017) Photocatalysis oxidation activity regulation of Ag/TiO2 composites evaluated by the selective oxidation of Rhodamine B. Appl Surf Sci 422:1–10

    CAS  Google Scholar 

  4. Wang P, Jia CC, Li J, Yang P (2019) Ti3+-doped TiO2(B)/anatase spheres prepared using thioglycolic acid towards super photocatalysis performance. J Alloy Compd 780:660–670

    CAS  Google Scholar 

  5. Liu Q, Ding DY, Ning CQ, Wang XW (2015) Black Ni-doped TiO2 photoanodes for high-efficiency photoelectrochemical water-splitting. Int J Hydrogen Energy 40:2107–2114

    Google Scholar 

  6. Darbandi M, Dickerson JH (2016) Nanoscale engineering of TiO2 nanoparticles: evolution of the shape, phase, morphology, and facet orientation. Mater Lett 180:212–218

    CAS  Google Scholar 

  7. Sarkar B, Singhal N, Goyal R, Bordoloi A, Konathala LNS, Kumar U, Bal R (2016) Morphology-controlled synthesis of TiO2 nanostructures for environmental application. Catal Commun 74:43–48

    CAS  Google Scholar 

  8. He XY, Zhang CL (2019) Recent advances in structure design for enhancing photocatalysis. J Mater Sci 54:8831–8851. https://doi.org/10.1007/s10853-019-03417-8

    Article  CAS  Google Scholar 

  9. Zha RH, Nadimicherla R, Guo X (2015) Morphology engineering of nanostructured TiO--2 particles. RSC Adv 5:6481–6488

    CAS  Google Scholar 

  10. Verbruggen SW (2015) TiO2 photocatalysis for the degradation of pollutants in gas phase: from morphological design to plasmonic enhancement. J Photochem Photobiol C 24:64–82

    CAS  Google Scholar 

  11. Dufour F, Pigeot-Remy S, Durupthy O et al (2015) Morphological control of TiO2 anatase nanoparticles: What is the good surface property to obtain efficient photocatalysts? Appl Catal B-Environ 174:350–360

    Google Scholar 

  12. Sambandam B, Surenjan A, Philip L, Pradeep T (2015) Rapid synthesis of C-TiO2: tuning the shape from spherical to rice grain morphology for visible light photocatalytic application. ACS Sustain Chem Eng 3:1321–1329

    CAS  Google Scholar 

  13. Chen Y, Li WZ, Wang JY, Gan YL, Liu L, Ju MT (2016) Microwave-assisted ionic liquid synthesis of Ti3+ self-doped TiO2 hollow nanocrystals with enhanced visible-light photoactivity. Appl Catal B-Environ 191:94–105

    CAS  Google Scholar 

  14. Lv J, Gao HZ, Wang HG et al (2015) Controlled deposition and enhanced visible light photocatalytic performance of Pt-modified TiO-2 nanotube arrays. Appl Surf Sci 351:225–231

    CAS  Google Scholar 

  15. Yu X, Zhao ZH, Zhang J, Guo WB, Li LL, Liu H, Wang ZL (2017) One-step synthesis of ultrathin nanobelts-assembled urchin-like anatase TiO2 nanostructures for highly efficient photocatalysis. CrystEngComm 19:129–136

    CAS  Google Scholar 

  16. Chen W, Wang Y, Liu S et al (2018) Non-noble metal Cu as a cocatalyst on TiO2 nanorod for highly efficient photocatalytic hydrogen production. Appl Surf Sci 445:527–534

    CAS  Google Scholar 

  17. Wang H, Wu D, Wu W et al (2019) Preparation of TiO2 microspheres with tunable pore and chamber size for fast gaseous diffusion in photoreduction of CO2 under simulated sunlight. J Colloid Interface Sci 539:194–202

    CAS  Google Scholar 

  18. Anwer S, Bharath G, Iqbal S et al (2018) Synthesis of edge-site selectively deposited Au nanocrystals on TiO2 nanosheets: an efficient heterogeneous catalyst with enhanced visible-light photoactivity. Electrochim Acta 283:1095–1104

    CAS  Google Scholar 

  19. Sharma PK, Cortes M, Hamilton JWJ, Han YS, Byrne JA, Nolan M (2019) Surface modification of TiO2 with copper clusters for band gap narrowing. Catal Today 321:9–17

    Google Scholar 

  20. Colomer MT, del Campo A (2019) Preparation of nanostructured TiO2 films with high catalytic activity and their 3D spatial distribution of anatase and rutile phases. J Mater Sci 54:9414–9425. https://doi.org/10.1007/s10853-019-03550-4

    Article  CAS  Google Scholar 

  21. Devan RS, Patil RA, Lin JH, Ma YR (2012) One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications. Adv Funct Mater 22:3326–3370

    CAS  Google Scholar 

  22. Leng M, Chen Y, Xue JM (2014) Synthesis of TiO2 nanosheets via an exfoliation route assisted by a surfactant. Nanoscale 6:8531–8534

    CAS  Google Scholar 

  23. Mohan Kumar K, Godavarthi S, Karthik TVK et al (2016) Green synthesis of S-doped rod shaped anatase TiO2 microstructures. Mater Lett 183:211–214

    CAS  Google Scholar 

  24. Zhu K, Vinzant TB, Neale NR, Frank AJ (2007) Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells. Nano Lett 7:3739–3746

    CAS  Google Scholar 

  25. Li SS, Chang CP, Lin CC et al (2011) Interplay of three-dimensional morphologies and photocarrier dynamics of polymer/TiO2 bulk heterojunction solar cells. J Am Chem Soc 133:11614–11620

    CAS  Google Scholar 

  26. Zhang ZH, Wu HJ (2014) Multiple band light trapping in ultraviolet, visible and near infrared regions with TiO2 based photonic materials. Chem Commun 50:14179–14182

    CAS  Google Scholar 

  27. Lei BX, Liao JY, Zhang R, Wang J, Su CY, Kuang DB (2010) Ordered crystalline TiO2 nanotube arrays on transparent FTO glass for efficient dye-sensitized solar cells. J Phys Chem C 114:15228–15233

    CAS  Google Scholar 

  28. Gao M, Zhu L, Ong WL, Wang J, Ho GW (2015) Structural design of TiO2-based photocatalyst for H2 production and degradation applications. Catal Sci Technol 5:4703–4726

    CAS  Google Scholar 

  29. Lou XW, Wang Y, Yuan C, Lee JY, Archer LA (2006) Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater 18:2325–2329

    CAS  Google Scholar 

  30. Chen G, Cheng H, Zhang W, Yang Z, Qiu M, Zhu X, Chen M (2015) Template-free synthesis of single-/double-walled TiO2 nanovesicles: potential photocatalysts for engineering application. AIChE J 61:1478–1482

    CAS  Google Scholar 

  31. Yang J, Wen ZH, Shen XX, Dai J, Li Y, Li YJ (2018) A comparative study on the photocatalytic behavior of graphene-TiO2 nanostructures: effect of TiO2 dimensionality on interfacial charge transfer. Chem Eng J 334:907–921

    CAS  Google Scholar 

  32. Aoi Y, Kobayashi S, Kamijo E, Deki S (2005) Fabrication of three-dimensional ordered macroporous titanium oxide by the liquid-phase deposition method using colloidal template. J Mater Sci 40:5561–5563. https://doi.org/10.2472/jsms.53.1313

    Article  CAS  Google Scholar 

  33. Paramasivam I, Jha H, Liu N, Schmuki P (2012) A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. Small 8:3073–3103

    CAS  Google Scholar 

  34. Dong F, Zhao WR, Wu ZB (2008) Characterization and photocatalytic activities of C, N and S co-doped TiO2 with 1D nanostructure prepared by the nano-confinement effect. Nanotechnology 19:365607–365616

    Google Scholar 

  35. Chen K, Fan QH, Chen CL, Chen ZS, Alsaedi A, Hayat T (2019) Insights into the crystal size and morphology of photocatalysts. J Colloid Interface Sci 538:638–647

    CAS  Google Scholar 

  36. Li HX, Bian ZF, Zhu J et al (2007) Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. J Am Chem Soc 129:8406–8407

    CAS  Google Scholar 

  37. Zeng L, Song WL, Xie CS (2014) Fabrication of TiO2 rod in tube nanostructure with enhanced photocatalytic activity: investigation of the effect of the states of the precursor on morphology. RSC Adv 4:36708–36712

    CAS  Google Scholar 

  38. Yang XY, Peng HL, Zou ZM et al (2018) Diethylenediamine-assisted template-free synthesis of a hierarchical TiO2 sphere-in-sphere with enhanced photocatalytic performance. Dalton T 47:16502–16508

    CAS  Google Scholar 

  39. Ye T, Chen W, Xu H, Geng NN, Cai Y (2018) Preparation of TiO2/graphene composite with appropriate N-doping ratio for humic acid removal. J Mater Sci 53:613–625. https://doi.org/10.1007/s10853-017-1509-4

    Article  CAS  Google Scholar 

  40. Yang GD, Jiang Z, Shi HH, Xiao TC, Yan ZF (2010) Preparation of highly visible-light active N-doped TiO2 photocatalyst. J Mater Chem 20:5301–5309

    CAS  Google Scholar 

  41. Li X, Liu P, Mao Y, Xing M, Zhang J (2015) Preparation of homogeneous nitrogen-doped mesoporous TiO2 spheres with enhanced visible-light photocatalysis. Appl Catal B-Environ 164:352–359

    CAS  Google Scholar 

  42. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13:3169–3183

    CAS  Google Scholar 

  43. Liu C, Zhang L, Liu R et al (2016) Hydrothermal synthesis of N-doped TiO2 nanowires and N-doped graphene heterostructures with enhanced photocatalytic properties. J Alloy Compd 656:24–32

    CAS  Google Scholar 

  44. Lin Z, Waller G, Liu Y, Liu M, Wong C-P (2012) Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv Energy Mater 2:884–888

    CAS  Google Scholar 

  45. Chen CS, Liu XY, Long H, Ding F, Liu QC, Chen XA (2019) Preparation and photocatalytic performance of graphene Oxide/WO3 quantum Dots/TiO2@SiO2 microspheres. Vacuum 164:66–71

    CAS  Google Scholar 

  46. Tian G, Chen Y, Bao H-L et al (2012) Controlled synthesis of thorny anatase TiO2 tubes for construction of Ag-AgBr/TiO2 composites as highly efficient simulated solar-light photocatalyst. J Mater Chem 22:2081–2088

    CAS  Google Scholar 

  47. Tian GH, Chen YJ, Zhou W, Pan K, Tian CG, Huang XR, Fu HG (2011) 3D hierarchical flower-like TiO2 nanostructure: morphology control and its photocatalytic property. CrystEngComm 13:2994–3000

    CAS  Google Scholar 

  48. Zhang Y, Wang CW, Hou HS, Zou GQ, Ji XB (2017) Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv Energy Mater 7:1600173–1600184

    Google Scholar 

  49. Bao Y, Kang QL, Ma JZ, Liu C (2017) Monodisperse hollow TiO2 spheres for thermal insulation materials: template-free synthesis, characterization and properties. Ceram Int 43:8596–8602

    CAS  Google Scholar 

  50. Hua Chun Z (2007) Ostwald ripening: a synthetic approach for hollow nanomaterials. Curr Nanosci 3:177–181

    Google Scholar 

  51. Nguyen DT, Kim K-S (2016) Self-development of hollow TiO2 nanoparticles by chemical conversion coupled with Ostwald ripening. Chem Eng J 286:266–271

    CAS  Google Scholar 

  52. Yang HG, Zeng HC (2004) Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J Phys Chem B 108:3492–3495

    CAS  Google Scholar 

  53. Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E (2007) N-doped TiO2: theory and experiment. Chem Phys 339:44–56

    Google Scholar 

  54. Prakash K, Karuthapandian S, Senthilkumar S (2019) Zeolite nanorods decorated g-C3N4 nanosheets: a novel platform for the photodegradation of hazardous water contaminants. Mater Chem Phys 221:34–56

    CAS  Google Scholar 

  55. Chen CS, Cao SY, Long H et al (2015) Highly efficient photocatalytic performance of graphene oxide/TiO2-Bi2O3 hybrid coating for organic dyes and NO gas. J Mater Sci-Mater Electron 26:3385–3391

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51772102, 51972114, 51902107); the National Natural Science Foundation of Guangdong Province (2019A1515011002, 2019A1515011992); the Guangdong YangFan Innovative & Entrepreneurial Research Team Program (2016YT03C327); Project funded by China Postdoctoral Science Foundation (2018M643074, 2019T120728); and Fundamental Research Funds for the Central Universities (2019MS002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anze Shui or Bin Du.

Ethics declarations

Conflict of interest

No author has financial or other contractual agreements that might cause conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, B., Chen, W., Ma, J. et al. Fabrication of tunable 1D rod-like and 3D yolk-like TiO2 hierarchical architectures for efficient photocatalysis. J Mater Sci 55, 3760–3773 (2020). https://doi.org/10.1007/s10853-019-04247-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04247-4

Navigation