Optimization of multiferroic properties in BiFeO3–BaTiO3-based ceramics by tuning oxygen octahedral distortion

A Correction to this article was published on 10 September 2020

This article has been updated


The structural evolution and variation in multiferroic properties induced by sintering conditions were investigated in the 0.67(Sm0.12Bi0.88FeO3)–0.33BaTiO3 ceramics. Sintering at various temperatures induces the transition between tetragonal and cubic phases as well as the variation in distortion degree of oxygen octahedra, contributing to the optimization of multiferroic properties. The magnetoelectric coupling effect is induced by the destabilized cycloidal spin structure resulting from the distortion in FeO6 octahedra, and the magnetoelectric coefficient of the ceramics depends on the destabilized degree in the spin structure, which relates to the sintering temperature. The ceramic sintered at 1000 °C with a relatively high dielectric constant shows a remnant magnetization, remnant polarization and magnetoelectric coupling coefficient of ~ 0.55 emu/g, ~ 8.9 μC/cm2 and ~ 5 mV/(cm · Oe), respectively.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Change history

  • 10 September 2020

    In the original article an incorrect magnetic field range was included in Fig.��9a. The corrected figure is presented below.


  1. 1

    Dai HY, Xue RZ, Chen ZP, Li T, Chen J, Xiang HW (2014) Effect of Eu, Ti co-doping on the structural and multiferroic properties of BiFeO3 ceramics. Ceram Int 40:15617–15622

    CAS  Google Scholar 

  2. 2

    Valant M, Axelsson AK, Alford N (2007) Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem Mater 19:5431–5436

    CAS  Google Scholar 

  3. 3

    Sangian H, Mirzaee O, Tajally M, Lavasani SANH (2018) Monitoring the Bi/Fe ratio at different pH values in BiFeO3 nanoparticles derived by normal and reverse chemical co-precipitation: a comparative study on the purity, microstructure and magnetic properties. Ceram Int 44:5109–5115

    CAS  Google Scholar 

  4. 4

    Wang J et al (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722

    CAS  Google Scholar 

  5. 5

    Ruette B, Zvyagin S, Pyatakov AP, Bush A, Li JF, Belotelov VI, Zvezdin AK, Viehland D (2004) Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: cycloidal to homogeneous spin order. Phys Rev B 69:064114

    Google Scholar 

  6. 6

    Sando D, Agbelele A, Rahmedov D, Liu J, Rovillain P, Toulouse C et al (2013) Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat Mater 12:641–646

    CAS  Google Scholar 

  7. 7

    Sánchez D, Ortega N, Kumar A, Sreenivasulu G, Katiyar RS, Scott JF et al (2013) Room-temperature single phase multiferroic magnetoelectrics: Pb(Fe, M)x(Zr, Ti)1−xO3 [M = Ta, Nb]. J Appl Phys 113:074105

    Google Scholar 

  8. 8

    Diéguez O, Íñiquez J (2011) First-principles investigation of morphotropic transitions and phase-change functional responses in BiFeO3–BiCoO3 multiferroic solid solutions. Phys Rev Lett 107:057601

    Google Scholar 

  9. 9

    Fernández-Posada CM, Castro A, Kiat JM, Porcher F, Peña O, AlgueróM AH (2016) A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity. Nat Commun 7:12772

    Google Scholar 

  10. 10

    Datta K, Neder RB, Chen J, Neuefeind JC, Mihailova B (2017) Favorable concurrence of static and dynamic phenomena at the morphotropic phase boundary of xBiNi0.5Zr0.5O3−(1−x)PbTiO3. Phys Rev Lett 119:207604

    CAS  Google Scholar 

  11. 11

    Yang Y, Zhou YB, Ren J, Zheng QJ, Lam KH, Lin DM (2018) Coexistence of three ferroelectric phases and enhanced piezoelectric properties in BaTiO3–CaHfO3 lead-free ceramics. J Eur Ceram Soc 38:557–566

    CAS  Google Scholar 

  12. 12

    Luo J, Sun W, Zhou Z, Lee HY, Wang K, Zhu FY et al (2017) Monoclinic (K, Na)NbO3 ferroelectric phase in epitaxial films. Adv Electron Mater 3:1700226

    Google Scholar 

  13. 13

    Singh A, Moriyoshi C, Kuroiwa Y, Pandey D (2013) Evidence for local monoclinic structure, polarization rotation, and morphotropic phase transitions in (1−x)BiFeO3−xBaTiO3 solid solutions: a high-energy synchrotron X-ray powder diffraction study. Phys Rev B 88:024113

    Google Scholar 

  14. 14

    Kim S, Khanal GP, Nam HW, Fujii I, Ueno S, Moriyoshi C et al (2017) Structural and electrical characteristics of potential candidate lead-free BiFeO3–BaTiO3 piezoelectric ceramics. J Appl Phys 122:164105

    Google Scholar 

  15. 15

    Kim JS, Cheon CI, Lee CH, Jang PW (2004) Weak ferromagnetism in the ferroelectric BiFeO3–ReFeO3–BaTiO3 solid solutions (Re = Dy, La). J Appl Phys 96:468–474

    CAS  Google Scholar 

  16. 16

    Li Y, Wang YG, Zhu L, Zhou SD, Wu H (2019) Structural evolution in 0.67(Smx Bi1−x)FeO3–0.33BaTiO3 solid solution and its effect on multiferroic properties at room temperature. Mater Chem Phys 230:100–106

    CAS  Google Scholar 

  17. 17

    Chen J, Cheng J (2014) Enhanced thermal stability of lead-free high temperature 0.75BiFeO3–0.25BaTiO3 ceramics with excess Bi content. J Alloy Compd 589:115–119

    CAS  Google Scholar 

  18. 18

    Guan SB, Yang HB, Zhao YZ, Zhang R (2018) Effect of Li2CO3 addition in BiFeO3–BaTiO3 ceramics on the sintering temperature, electrical properties and phase transition. J Alloy Compd 735:386–393

    CAS  Google Scholar 

  19. 19

    Kim DJ, Lee MH, Park JS, Kim M-H, Song TK, Kim W-J et al (2015) Effects of Sintering Temperature on the electric properties of Mn-modified BiFeO3–BaTiO3 bulk ceramics. J Koren Phys Soc 66:1115–1119

    CAS  Google Scholar 

  20. 20

    Zhou C, Yang H, Zhou Q, Chen G, Li W, Wang H (2013) Effects of Bi excess on the structure and electrical properties of high-temperature BiFeO3–BaTiO3 piezoelectric ceramics. J Mater Sci Mater Electron 24:1685–1689. https://doi.org/10.1007/s10854-012-0996-y

    CAS  Google Scholar 

  21. 21

    Li Y, Wang YG, Zhou SD, Wu H (2019) Structural evolution and its effect on multiferroic properties in magnetoelectric 0.67Sm0.12Bi0.88FeO3–0.33BaTiO3 ceramics by tuning the cooling rate. J Mater Sci 54:7428–7437. https://doi.org/10.1007/s10853-019-03404-z

    CAS  Google Scholar 

  22. 22

    Lu J, Pan DA, Yang B et al (2008) Wideband magnetoelectric measurement system with the application of a virtual multi-channel lock-in amplifier. Meas Sci Technol 19:045702

    Google Scholar 

  23. 23

    Cheng S, Zhang BP, Zhao L, Wang KK (2018) Enhanced insulating and piezoelectric properties of 0.7BiFeO3–0.3BaTiO3 lead-free ceramics by optimizing calcination temperature: analysis of Bi3+ volatilization and phase structures. J Mater Chem C 6:3982–3989

    CAS  Google Scholar 

  24. 24

    Panda A, Govindaraj R, Mythili R, Amarendra G (2019) Formation of bismuth iron oxide based core–shell structures and their dielectric, ferroelectric and magnetic properties. J Mater Chem C 7:1280–1291

    CAS  Google Scholar 

  25. 25

    Kumar N, Patterson EA, Frömling T, Gorzkowski EP, Eschbach P, Love I et al (2018) Defect mechanisms in BaTiO3–BiMO3 ceramics. J Am Ceram Soc 101:2376–2390

    CAS  Google Scholar 

  26. 26

    Betancourt-Cantera LG, Bolarín-Miró AM, Cortés-Escobedo CA, Hernández-Cruz LE, Sánchez-De Jesús F (2018) Structural transitions and multiferroic properties of high Ni-doped BiFeO3. J Magn Magn Mater 456:381–389

    CAS  Google Scholar 

  27. 27

    Le TH, Hao NV, Thoan NH, Hong NTM, Hai PV, Thang NV et al (2019) Origin of enhanced magnetization in (La, Co) codoped BiFeO3 at the morphotropic phase boundary. Ceram Int 45:18480–18486

    CAS  Google Scholar 

  28. 28

    Mumtaz F, Jaffari GH, ul Hassan Q, Shah SI (2018) Correlation between ionic size and valence state of tetra, penta and hexavalent B-site substitution with solubility limit, phase transformation and multiferroic properties of Bi0.875Eu0.125FeO3. Phys B 538:213–224

    CAS  Google Scholar 

  29. 29

    Pedro-García F, Betancourt-Cantera LG, Bolarín-Miró AM, Cortés-Escobedo CA, Barba-Pingarrón A, Sánchez-De Jesús F (2019) Magnetoelectric coupling in multiferroic BiFeO3 by co-doping with strontium and nickel. Ceram Int 45:10114–10119

    Google Scholar 

  30. 30

    Kumar P, Kar M (2014) Effect of structural transition on magnetic and dielectric properties of La and Mn co-substituted BiFeO3 ceramics. Mater Chem Phys 148:968–977

    CAS  Google Scholar 

  31. 31

    Sharif MK, Khan MA, Warsi MF, Ramzan M, Hussain A (2018) Structural and ferroelectric properties of hafnium substituted BiFeO3 multiferroics synthesized via auto combustion technique. Ceram Int 44:20648–20655

    CAS  Google Scholar 

  32. 32

    Perejóna A, Gil-Gonzáleza E, Sánchez-Jiméneza PE, Westc AR, Pérez-Maqueda LA (2019) Electrical properties of bismuth ferrites: Bi2Fe4O9 and Bi25FeO39. J Eur Ceram Soc 39:330–339

    Google Scholar 

  33. 33

    Jang BK, Lee JH, Chu K, Sharma P, Kim GY et al (2016) Electric-field-induced spin disorder-to-order transition near a multiferroic triple phase point. Nat Phys 13:189–197

    Google Scholar 

  34. 34

    Mumtaz F, Jaffari GH, Shah SI (2018) Peculiar magnetism in Eu substituted BiFeO3 and its correlation with local structure. J Phys Condens Matter 30:435802

    Google Scholar 

  35. 35

    Graf ME, Di NS, Barral MA, Medina LM, Negri RM, Sepliarsky M, Llois AM (2018) Rhombohedral R3c to orthorhombic Pnma phase transition induced by Y-doping in BiFeO3. J Phys Condens Matter 30:285701

    CAS  Google Scholar 

  36. 36

    Zhu LF, Zhang BP, Zhao L, Li JF (2014) High piezoelectricity of BaTiO3–CaTiO3–BaSnO3 lead-free ceramics. J Mater Chem C 2:4764–4771

    CAS  Google Scholar 

  37. 37

    Xue PJ, Hu Y, Xia WR, Wu H, Zhu XH (2016) Molten-salt synthesis of BaTiO3 powders and their atomic-scale structural characterization. J Alloy Compd 695:2870–2877

    Google Scholar 

  38. 38

    Jha PA, Jha PK, Jha AK, Kotnala RK, Dwivedi RK (2014) Phase transformation and two-mode phonon behavior of (1−x)[BaZr0.025Ti0.975O3]–(x)[BiFeO3] solid solutions. J Alloy Compd 600:186–192

    CAS  Google Scholar 

  39. 39

    Pasha UM, Zheng H, Thakur OP, Feteira A, Whittle KR, Sinclair DC, Reaney IM (2007) In situ Raman spectroscopy of A-site doped barium titanate. Appl Phys Lett 91:062908

    Google Scholar 

  40. 40

    Zia L, Jaffari GH, Awan NA, Rahman JU, Lee S (2019) Electrical response of mixed phase (1−x)BiFeO3−xPbTiO3 solid solution: Role of tetragonal phase and tetragonality. J Alloy Compd 786:98–108

    CAS  Google Scholar 

  41. 41

    Sinha S, Chatterjee SK, Ghosh J, Meikap AK (2015) Electrical transport properties of polyvinyl alcohol–selenium nanocomposite films at and above room temperature. J Mater Sci 50:1632–1645. https://doi.org/10.1007/s10853-014-8724-z

    CAS  Article  Google Scholar 

  42. 42

    Lufaso MW (2004) Crystal structures, modeling, and dielectric property relationships of 2:1 ordered Ba3MM′2O9 (M = Mg, Ni, Zn; M′ = Nb, Ta) perovskites. Chem Mater 16:2148–2156

    CAS  Google Scholar 

  43. 43

    Xiong Z, Yang CT, Tang B, Fang ZX, Chen HT, Zhang SR (2018) Structure–property relationships of perovskite-structured Ca0.61Nd0.26Ti1−x (Cr0.5Nb0.5)xO3 ceramics. Ceram Int 44:7384–7392

    CAS  Google Scholar 

  44. 44

    Curecheriu LP, Buscaglia MT, Buscaglia V, Mitoseriu L, Postolache P, Ianculescu A, Nanni P (2010) Functional properties of magnetoelectric ceramics BaTiO3–Ni0.5Zn0.5Fe2O4 prepared from powders with core–shell structure. J Appl Phys 107:104106

    Google Scholar 

  45. 45

    Marzouki A, Harzali H, Loyau V, Gemeiner P, Zehani K, Dkhil B, Bessais L, Megriche A (2018) Large magnetoelectric response and its origin in bulk Co-doped BiFeO3 synthesized by a stirred hydrothermal process. Acta Mater 145:316–321

    CAS  Google Scholar 

  46. 46

    Sharma P, Satapathy S, Varshney D, Guptab PK (2015) Effect of sintering temperature on structure and multiferroic properties of Bi0.825Sm0.175FeO3 ceramics. Mater Chem Phys 162:469–476

    CAS  Google Scholar 

  47. 47

    Gotardo RAM, Silva EFR, Montanher DZ, Santos GM, Silva KL, Cótica LF et al (2017) Improved magnetic properties and structural characterizations in Mn doped 0.9BiFeO3–0.1BaTiO3 compositions. Scr Mater 130:161–164

    CAS  Google Scholar 

  48. 48

    Usama HM, Akter A, Zubair MA (2017) Modulation of structural, electrical, and magnetic features with dilute Zr substitution in Bi0.8La0.2Fe1−xZrxO3 system. J Appl Phys 122:244102

    Google Scholar 

  49. 49

    Zhou W, Zheng QJ, Li Y, Li Q, Wan Y, Wu M, Lin DM (2015) Structure, ferroelectric, ferromagnetic, and piezoelectric properties of Al-modified BiFeO3–BaTiO3 multiferroic ceramics. Phys Status Solidi A 212:632–639

    CAS  Google Scholar 

  50. 50

    Khomchenko VA, Karpinsky DV, Ivanov MS, Franz A, Dubkov SV, Silibin MV, Paixão JA (2019) Effect of combined Ca/Ti and Ca/Nb substitution on the crystal and magnetic structure of BiFeO3. J Magn Magn Mater 491:165561

    CAS  Google Scholar 

  51. 51

    Satyanarayana S, Sarma SCh, Peter SC, Bhattacharya S (2019) Magnetic characterization of nano-sized terbium doped bismuth ferrite synthesized by sol–gel method. J Magn Magn Mater 491:165571

    CAS  Google Scholar 

  52. 52

    Calisir I, Amirov AA, Kleppe AK, Hall DA (2018) Optimisation of functional properties in lead-free BiFeO3–BaTiO3 ceramics through La3+ substitution strategy. J Mater Chem A 6:5378–5397

    CAS  Google Scholar 

  53. 53

    Pan Q, Fang C, Luo HS, Chu BJ (2019) Magnetoelectric response from the enhanced ferromagnetism and flexoelectric response in reduced BiFeO3-based ceramics. J Eur Ceram Soc 39:1057–1064

    CAS  Google Scholar 

  54. 54

    Sahoo S, Hajra S, De M, Mohanta K, Choudhary RNP (2018) Processing, dielectric and impedance spectroscopy of lead free BaTiO3–BiFeO3–CaSnO3. J Alloy Compd 766:25–32

    CAS  Google Scholar 

  55. 55

    Lotey GS, Verma NK (2013) Magnetoelectric coupling in multiferroic Tb-doped BiFeO3 nanoparticles. Mater Lett 111:55–58

    CAS  Google Scholar 

  56. 56

    Shi XX, Liu XQ, Chen XM (2017) Readdressing of magnetoelectric effect in bulk BiFeO3. Adv Funct Mater 27:1604037

    Google Scholar 

Download references


This work is supported by the National Natural Science Foundation of China (Grant No. 11174148) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information



Corresponding author

Correspondence to Y. G. Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhou, S.D., Zhu, L. et al. Optimization of multiferroic properties in BiFeO3–BaTiO3-based ceramics by tuning oxygen octahedral distortion. J Mater Sci 55, 2750–2763 (2020). https://doi.org/10.1007/s10853-019-04244-7

Download citation