Compressive deformation of rolled AZ80 magnesium alloy along different material orientations

Abstract

The compressive deformation behavior of a rolled AZ80 magnesium alloy was experimentally studied with testing specimens taken from a thick plate at five different material orientations with respect to the normal direction (ND): 0° (ND), 30°, 45°, 60°, and 90° (RD). The experimental results reveal a strong anisotropy in the mechanical properties of the textured material. The macrotexture of specimens interrupted at different strains was examined by X-ray diffractometer. The correlation between the initial texture, the mechanical anisotropy, and the activation of different deformation modes was analyzed. The initial crystal orientation has a decisive effect on the operation of twinning and slip modes. The strength of initial texture also plays an important role in the evolution of microstructure.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1

    Dudamell NV, Ulacia I, Gálvez F, Yi S, Bohlen J, Letzig D, Hurtado I, Pérez-Prado MT (2011) Twinning and grain subdivision during dynamic deformation of a Mg AZ31 sheet alloy at room temperature. Acta Mater 59:6949–6962

    CAS  Article  Google Scholar 

  2. 2

    Wang BS, Xin RL, Huang GJ, Liu Q (2012) Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression. Mater Sci Eng A 534:588–593

    CAS  Article  Google Scholar 

  3. 3

    Jahedi M, McWilliams BA, Moy P, Knezevic M (2017) Deformation twinning in rolled WE43-T5 rare earth magnesium alloy: influence on strain hardening and texture evolution. Acta Mater 131:221–232

    CAS  Article  Google Scholar 

  4. 4

    Knezevic M, Levinson A, Harris R, Mishra RK, Doherty RD, Kalidindi SR (2010) Deformation twinning in AZ31: influence on strain hardening and texture evolution. Acta Mater 58:6230–6242

    CAS  Article  Google Scholar 

  5. 5

    Park SH, Hong SG, Lee CS (2013) In-plane anisotropic deformation behavior of rolled Mg–3Al–1Zn alloy by initial 10–12 twins. Mater Sci Eng A 570:149–163

    CAS  Article  Google Scholar 

  6. 6

    Agnew SR, Tomé CN, Brown DW, Holden TM, Vogel SC (2003) Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling. Scripta Mater 48:1003–1008

    CAS  Article  Google Scholar 

  7. 7

    Sarker D, Chen DL (2012) Detwinning and strain hardening of an extruded magnesium alloy during compression. Scripta Mater 67:165–168

    CAS  Article  Google Scholar 

  8. 8

    He JJ, Liu TM, Zhang Y, Xu S, Lu LW, Tan J (2013) Deformation behaviour of hot extruded Mg alloy AZ31 during compressive deformation. Mater Sci Technol 29:177–183

    CAS  Article  Google Scholar 

  9. 9

    Hong SG, Park SH, Lee CS (2010) Role of 10–12 twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Mater 58:5873–5885

    CAS  Article  Google Scholar 

  10. 10

    Koike J, Ohyama R (2005) Geometrical criterion for the activation of prismatic slip in AZ61 Mg alloy sheets deformed at room temperature. Acta Mater 53:1963–1972

    CAS  Article  Google Scholar 

  11. 11

    Song B, Xin RL, Chen G, Zhang XY, Liu Q (2012) Improving tensile and compressive properties of magnesium alloy plates by pre-cold rolling. Scripta Mater 66:1061–1064

    CAS  Article  Google Scholar 

  12. 12

    Lou XY, Li M, Boger RK, Agnew SR, Wagoner RH (2007) Hardening evolution of AZ31B Mg sheet. Int J Plast 23:44–86

    CAS  Article  Google Scholar 

  13. 13

    Xiong Y, Jiang Y (2016) Cyclic deformation and fatigue of rolled AZ80 magnesium alloy along different material orientations. Mater Sci Eng A 677:58–67

    CAS  Article  Google Scholar 

  14. 14

    Gryguc A, Behravesh SB, Shaha SK, Jahed H, Wells M, Williams B, Su X (2018) Low-cycle fatigue characterization and texture induced ratcheting behaviour of forged AZ80 Mg alloys. Int J Fatigue 116:429–438

    CAS  Article  Google Scholar 

  15. 15

    Yakubtsov IA, Diak BJ, Sager CA, Bhattacharya B, MacDonald WD, Niewczas M (2008) Effects of heat treatment on microstructure and tensile deformation of Mg AZ80 alloy at room temperature. Mater Sci Eng A 496:247–255

    Article  Google Scholar 

  16. 16

    Al-Samman T, Gottstein G (2008) Room temperature formability of a magnesium AZ31 alloy: examining the role of texture on the deformation mechanisms. Mater Sci Eng A 488:406–414

    Article  Google Scholar 

  17. 17

    Ando D, Koike J, Sutou Y (2010) Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys. Acta Mater 58:4316–4324

    CAS  Article  Google Scholar 

  18. 18

    Gryguc A, Jahed H, Williams B, McKinley J (2015) MagForge—mechanical behaviour of forged AZ31B extruded magnesium in monotonic compression. Mater Sci Forum 828–829:291–297

    Article  Google Scholar 

  19. 19

    Jiang J, Godfrey A, Liu W, Liu Q (2008) Microtexture evolution via deformation twinning and slip during compression of magnesium alloy AZ31. Mater Sci Eng A 483–484:576–579

    Article  Google Scholar 

  20. 20

    Xiong Y, Yu Q, Jiang Y (2018) Deformation of extruded ZK60 magnesium alloy under uniaxial loading in different material orientations. Mater Sci Eng A 710:206–213

    CAS  Article  Google Scholar 

  21. 21

    Gao P, Zhu SQ, An XH, Xu SQ, Ruan D, Chn C, Yan HG, Ringer SP, Liao XZ (2017) Effect of sample orientasion and initial microstructures on the dynamic recrystallization of a Magnesium alloy. Mater Sci Eng A 691:150–154

    CAS  Article  Google Scholar 

  22. 22

    Chun YB, Davies CHJ (2011) Investigation of prism <a> slip in warm-rolled AZ31 alloy. Metall Mater Trans A 42:4113–4125

    CAS  Article  Google Scholar 

  23. 23

    Xu DK, Liu L, Xu YB, Han EH (2008) The relationship between macro-fracture modes and roles of different deformation mechanisms for the as-extruded Mg–Zn–Zr alloy. Scripta Mater 58:1098–1101

    CAS  Article  Google Scholar 

  24. 24

    Park SH, Hong SG, Lee JH, Lee CS (2012) Multiple twinning modes in rolled Mg–3Al–1Zn alloy and their selection mechanism. Mater Sci Eng A 532:401–406

    CAS  Article  Google Scholar 

  25. 25

    Gryguc A, Shaha SK, Jahed H, Wells M, Williams B, Mckinley J (2016) Tensile and fatigue behavior of as-forged AZ31B extrusion. Frattura ed Integrità Strutturale 38:251–258

    Article  Google Scholar 

  26. 26

    Gryguc A, Behravesh SB, Shaha SK, Jahed H, Wells M, Williams B, Su X (2019) Multiaxial cyclic behaviour of extruded and forged AZ80 Mg alloy. Int J Fatigue 127:324–337

    CAS  Article  Google Scholar 

  27. 27

    Jiang L, Jonas JJ, Mishra RK, Luo AA, Sachdev AK, Godet S (2007) Twinning and texture development in two Magnesium alloys subjected to loading along three different strain paths. Acta Mater 55:3899–3910

    CAS  Article  Google Scholar 

  28. 28

    Barnett MR, Keshavarz Z, Beer AG, Ma X (2008) Non-Schmid behavior during secondary twinning in a polycrystalline magnesium alloy. Acta Mater 56:5–15

    CAS  Article  Google Scholar 

  29. 29

    Jiang L, Jonas JJ, Luo AA, Sachdev AK, Godet S (2006) Twinning-induced softening in polycrystalline AM30 magnesium alloy at moderate temperatures. Scripta Mater 54:771–775

    CAS  Article  Google Scholar 

  30. 30

    Gryguc A, Behravesh SB, Shaha SK, Jahed H, Wells M, Williams B, Su X (2017) Monotonic and cyclic behaviour of cast and cast-forged AZ80 Mg. Int J Fatigue 104:136–149

    CAS  Article  Google Scholar 

  31. 31

    Brown DW, Agnew SR, Bourke MAM, Holden TM, Vogel SC, Tomé CN (2005) Internal strain and texture evolution during deformation twinning in magnesium. Mater Sci Eng, A 399:1–12

    Article  Google Scholar 

  32. 32

    Wu L, Agnew SR, Brown DW, Stoica GM, Clausen B, Jain A, Fielden DE, Liaw PK (2008) Internal stress relaxation and load redistribution during the twinning–detwinning–dominated cyclic deformation of a wrought magnesium alloy ZK60A. Acta Mater 56:3699–3707

    CAS  Article  Google Scholar 

  33. 33

    Agnew SR, Brown DW, Tomé CN (2006) Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction. Acta Mater 54:4841–4852

    CAS  Article  Google Scholar 

  34. 34

    Koike J (2005) Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Magnesium alloys at room temperature. Metall Mater Trans A 36:1689–1696

    Article  Google Scholar 

  35. 35

    Ma Q, Kadiri HEl, Oppedal AL, Baird JC, Li B, Horstemeyer MF, Vogel SC (2012) Twins effects in a rod-textured AM30 magnesium alloy. Int J Plast 29:60–76

    CAS  Article  Google Scholar 

  36. 36

    Jiang L, Jonas JJ, Luo AA, Sachdev AK, Godet S (2007) Influence of 10–12 extension twinning on the flow behavior of AZ31 Magnesium alloy. Mater Sci Eng A 445–446:302–309

    Article  Google Scholar 

  37. 37

    Yi SB, Davies CHJ, Brokmeier HG, Bolmaro RE (2006) Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading. Acta Mater 54:549–562

    CAS  Article  Google Scholar 

  38. 38

    Agnew SR, Duygulu Ö (2005) Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int J Plast 21:1161–1193

    CAS  Article  Google Scholar 

  39. 39

    Wang L, Yang Y, Eisenlohr P, Bieler TR, Crimp MA, Mason DE (2009) Twin nucleation by slip transfer across grain boundaries in commercial purity titanium. Metall Mater Trans A 41:421–430

    Article  Google Scholar 

Download references

Acknowledgements

Ying Xiong gratefully acknowledges financial support provided by the Natural Science Foundation of China (Nos. 51775502, 51275472) and the Natural Science Foundation of Zhejiang Province (No. LY20E050024). Yanyao Jiang acknowledges the support from the National Science Foundation (CMMI-1762312).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ying Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Jiang, Y. Compressive deformation of rolled AZ80 magnesium alloy along different material orientations. J Mater Sci 55, 4043–4053 (2020). https://doi.org/10.1007/s10853-019-04238-5

Download citation