Skip to main content

Advertisement

Log in

Polydopamine modification electrospun polyacrylonitrile fibrous membrane with decreased pore size and dendrite mitigation for lithium ion battery

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Large pore size of fibrous membrane (FM) deteriorates the cycle lifetime and rate capabilities, and the way of obtaining FM with improved electrolyte wettability and decreased pore size is still challenging. Herein, we report a facile method for the fabrication of the polydopamine modification polyacrylonitrile (PDA@PAN) FM via the combination of the spin coating and electrospinning techniques. The PDA coating increases the fiber diameter and the surface roughness of the PAN fibers, thus decreasing the pore size and mitigating the lithium dendrite formation by uniformly distributing Li-ion flux. Meanwhile, PDA modification not only improves the affinity for electrolyte and enhances the ion conductivity (1.39 mS cm−1), but also doubles the stress strength (13.92 MPa) because of the formation of more adhesion structure. Consequently, both the Li/LiFePO4 and Li/Li4Ti5O12 cells involving PDA@PAN FM demonstrate more stable cycle life and better rate capability compared with those of cells based on PAN FM and Celgard membrane. The work also provides a promising separator fabrication strategy for other energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Lu J, Chen Z, Ma Z, Pan F, Curtiss LA, Amine K (2016) The role of nanotechnology in the development of battery materials for electric vehicles. Nat Nanotechnol 11:1031–1039

    CAS  Google Scholar 

  2. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    CAS  Google Scholar 

  3. Li Y, Pu H, Wei Y (2018) Polypropylene/polyethylene multilayer separators with enhanced thermal stability for lithium-ion battery via multilayer coextrusion. Electrochim Acta 264:140–149

    CAS  Google Scholar 

  4. Zhang Z, Arora P (2004) Battery separators. Chem Rev 104:4419–4462

    Google Scholar 

  5. Nunes-Pereira J, Costa CM, Lanceros-Méndez S (2015) Polymer composites and blends for battery separators: state of the art, challenges and future trends. J Power Sources 281:378–398

    CAS  Google Scholar 

  6. Sun G, Dong G, Kong L, Yan X, Tian G, Qi S, Wu D (2018) Robust polyimide nanofibrous membrane with porous-layer-coated morphology by in situ self-bonding and micro-crosslinking for lithium-ion battery separator. Nanoscale 10:22439–22447

    CAS  Google Scholar 

  7. Dai J, Shi C, Li C, Shen X, Peng L, Wu D, Sun D, Zhang P, Zhao J (2016) A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine-ceramic composite modification of polyolefin membranes. Energy Environ Sci 9:3252–3261

    CAS  Google Scholar 

  8. Cao C, Tan L, Liu W, Ma J, Li L (2014) Polydopamine coated electrospun poly(vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries. J Power Sources 248:224–229

    CAS  Google Scholar 

  9. Ryou MH, Lee YM, Park JK, Choi JW (2011) Mussel-inspired polydopamine-treated polyethylene separators for high-power li-ion batteries. Adv Mater 23:3066–3070

    CAS  Google Scholar 

  10. Kim M, Kim J, Park J (2015) Clay nanosheets in skeletons of controlled phase inversion separators for thermally stable Li-ion batteries. Adv Funct Mater 25:3399–3404

    CAS  Google Scholar 

  11. Li J, Niu X, Song J, Li Y, Li X, Hao W, Fang J, He T (2019) Harvesting vapor by hygroscopic acid to create pore: morphology, crystallinity and performance of poly (ether ether ketone) lithium ion battery separator. J Membr Sci 577:1–11

    Google Scholar 

  12. Yanilmaz M, Lu Y, Li Y, Zhang X (2015) SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries. J Power Sources 273:1114–1119

    CAS  Google Scholar 

  13. Agubra V, Garza D, Gallegos L, Alcoutlabi M (2016) ForceSpinning of polyacrylonitrile for mass production of lithium-ion battery separators. J Appl Polym Sci 133:42847

    Google Scholar 

  14. Wang N, Yang Y, Al-Deyab SS, El-Newehy M, Yu J, Ding B (2015) Ultra-light 3D nanofibre-nets binary structured nylon 6-polyacrylonitrile membranes for efficient filtration of fine particulate matter. J Mater Chem A 3:23946–23954

    CAS  Google Scholar 

  15. Zhai Y, Xiao K, Yu J, Ding B (2015) Fabrication of hierarchical structured SiO2/polyetherimide-polyurethane nanofibrous separators with high performance for lithium ion batteries. Electrochim Acta 154:219–226

    CAS  Google Scholar 

  16. Jiang S, Uch B, Agarwal S, Greiner A (2017) Ultralight, thermally insulating, compressible polyimide fiber assembled sponges. ACS Appl Mater Interfaces 9(37):32308–32315

    CAS  Google Scholar 

  17. Zhai Y, Xiao K, Yu J, Ding B (2016) Closely packed x-poly(ethylene glycol diacrylate) coated polyetherimide/poly(vinylidene fluoride) fiber separators for lithium ion batteries with enhanced thermostability and improved electrolyte wettability. J Power Sources 325:292–300

    CAS  Google Scholar 

  18. Yang H, Liu S, Cao L, Jiang S, Hou H (2018) Superlithiation of non-conductive polyimide toward high-performance lithium-ion batteries. J Mater Chem A 6(42):21216–21224

    CAS  Google Scholar 

  19. Zhai Y, Xiao K, Yu J, Yang J, Ding B (2015) Thermostable and nonflammable silica-polyetherimide-polyurethane nanofibrous separators for high power lithium ion batteries. J Mater Chem A 3:10551–10558

    CAS  Google Scholar 

  20. Liu H, Wang X, Kuang C, Li L, Zhai Y (2018) Polyvinylidene fluoride/polystyrene hybrid fibers with high ionic conductivity and enhanced mechanical strength as lithium-ion battery separators. J Solid State Electrochem 22:3579–3587

    CAS  Google Scholar 

  21. Liu X, Song K, Lu C, Huang Y, Duan X, Li S, Ding Y (2018) Electrospun PU@GO separators for advanced lithium ion batteries. J Membr Sci 555:1–6

    CAS  Google Scholar 

  22. Li Z, Wang W, Han Y, Zhang L, Li S, Tang B, Xu S, Xu Z (2018) Ether modified poly(ether ether ketone) nonwoven membrane with excellent wettability and stability as a lithium ion battery separator. J Power Sources 378:176–183

    CAS  Google Scholar 

  23. Zhai Y, Wang N, Mao X, Si Y, Yu J, Al-Deyab SS, El-Newehy M, Ding B (2014) Sandwich-structured PVdF/PMIA/PVdF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries. J Mater Chem A 2:14511–14518

    CAS  Google Scholar 

  24. Zhu M, Wu J, Zhong W-H, Lan J, Sui G, Yang X (2018) A biobased composite gel polymer electrolyte with functions of lithium dendrites suppressing and manganese ions trapping. Adv Energy Mater 8:1702561

    Google Scholar 

  25. Wang Y, Wang S, Fang J, Ding L-X, Wang H (2017) A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 537:248–254

    CAS  Google Scholar 

  26. Chen Y, Gao Y, Jian J, Lu Y, Zhang B, Liu H, Li L, Wang X, Kuang C, Zhai Y (2018) A dual-layer micro/nanostructured fibrous membrane with enhanced ionic conductivity for lithium-ion battery. Electrochim Acta 292:357–363

    CAS  Google Scholar 

  27. Wu D, Deng L, Sun Y, Teh K, Shi C, Tan Q, Zhao J, Sun D, Lin L (2017) A high-safety PVDF-Al2O3 composite separator for Li-ion batteries via tip-induced electrospinning and dip-coating. RSC Adv 7:24410–24416

    Google Scholar 

  28. Prasanth R, Aravindan V, Srinivasan M (2012) Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly(methyl methacrylate)/polystyrene for lithium ion batteries-Preparation and electrochemical characterization. J Power Sources 202:299–307

    CAS  Google Scholar 

  29. Carol P, Ramakrishnan P, John B, Cheruvally G (2011) Preparation and characterization of electrospun poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries. J Power Sources 196:10156–10162

    CAS  Google Scholar 

  30. Yanilmaz M, Lu Y, Zhu J, Zhang X (2016) Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries. J Power Sources 313:205–212

    CAS  Google Scholar 

  31. Gopalan A, Santhosh P, Manesh K, Nho J, Kim S, Hwang C, Lee K (2008) Development of electrospun PVdF-PAN membrane-based polymer electrolytes for lithium batteries. J Membr Sci 325:683–690

    CAS  Google Scholar 

  32. Ma X, Kolla P, Yang R, Wang Z, Zhao Y, Smirnova AL, Fong H (2017) Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators. Electrochim Acta 236:417–423

    CAS  Google Scholar 

  33. Ryou MH, Lee DJ, Lee JN, Lee YM, Park JK, Choi JW (2012) Excellent cycle life of lithium-metal anodes in lithium-ion batteries with Mussel-inspired polydopamine-coated separators. Adv Energy Mater 2:645–650

    CAS  Google Scholar 

  34. Xiao K, Zhai Y, Yu J, Ding B (2015) Nanonet-structured poly(m-phenylene isophthalamide)-polyurethane membranes with enhanced thermostability and wettability for high power lithium ion batteries. RSC Adv 5:55478–55485

    CAS  Google Scholar 

  35. Lin D, Zhuo D, Liu Y, Cui Y (2016) All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J Am Chem Soc 138:11044–11050

    CAS  Google Scholar 

  36. Chi M, Shi L, Wang Z, Zhu J, Mao X, Zhao Y, Zhang M, Sun L, Yuan S (2016) Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators. Nano Energy 28:1–11

    CAS  Google Scholar 

  37. Li W, Rodríguez-Castellón E, Bandosz TJ (2017) Photosensitivity of g-C3N4/S-doped carbon composites: study of surface stability upon exposure to CO2 and/or water in ambient light. J Mater Chem A 5(47):24880–24891

    CAS  Google Scholar 

  38. Li H, Kong W, Liu J, Liu N, Huang H, Liu Y, Kang Z (2015) Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection. Carbon 91:66–75

    CAS  Google Scholar 

  39. Jiang Z, Sun H, Shi W, Zhou T, Hu J, Cheng J, Hu P, Sun S (2019) Co3O4 nanocage derived from metal-organic frameworks: an excellent cathode catalyst for rechargeable Li-O2 battery. Nano Res 12(7):1555–1562

    CAS  Google Scholar 

  40. Smith SA, Williams BP, Joo YL (2017) Effect of polymer and ceramic morphology on the material and electrochemical properties of electrospun PAN/polymer derived ceramic composite nanofiber membranes for lithium ion battery separators. J Membr Sci 526:315–322

    CAS  Google Scholar 

  41. Wang Z, Guo F, Chen C, Shi L, Yuan S, Sun L, Zhu J (2015) Self-assembly of PEI/SiO2 on polyethylene separators for Li-ion batteries with enhanced rate capability. ACS Appl Mater Interfaces 7:3314–3322

    CAS  Google Scholar 

  42. Li H, Wu D, Wu J, Dong L-Y, Zhu Y-J, Hu X (2017) Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries. Adv Mater 29:1703548

    Google Scholar 

  43. Zhang H, Liao X, Guan Y, Xiang Y, Li M, Zhang W, Zhu X, Ming H, Lu L, Qiu J, Huang Y, Cao G, Yang Y, Mai L, Zhao Y, Zhang H (2018) Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat Commun 9:3729

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Program for Science and Technology of Zhejiang Province (Nos. 2018C37075 and 2017C31071), the National Natural Science Foundation of China (Nos. 51503079, 51803075, 51103063 and 21177049), the Program for Science and Technology of Jiaxing City (No. 2016AY13008) and the National Students’ platform for innovation and entrepreneurship training program (No. 201910354011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiqing Liu or Yunyun Zhai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Sang, X., Chen, Y. et al. Polydopamine modification electrospun polyacrylonitrile fibrous membrane with decreased pore size and dendrite mitigation for lithium ion battery. J Mater Sci 55, 3549–3560 (2020). https://doi.org/10.1007/s10853-019-04218-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04218-9