Skip to main content
Log in

The effect of stress on surface and interface segregation in thin alloy films on inert substrates

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We employed a regular solution-type model to describe the equilibrium segregation of solute atoms on the external surface and at the film–substrate interface in the ultrathin single-crystalline films of binary metal alloys attached to an inert substrate. The finite size of the system, the interlayer interactions in the film and the heteroepitaxial strain in the film were taken into account. We demonstrated that the homogeneous heteroeptiaxial strain in the film affects the surface and interface segregation of solute atoms only in the case when the value of coherency strain parameter (describing the relative change of alloy lattice parameter upon addition of solutes) in the surface and interface layers is different from its value in the rest of the films. The developed model was applied to the Ni(Au) thin films deposited on sapphire substrate. The quantitative agreement between the model predictions and recent experimental data on interface segregation of Au could be achieved by assuming that the film is heteroepitaxially compressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Blakley JM (1978) Segregation to surfaces: dilute alloys of the transition metals. Crit Rev Solid State Mater Sci 7:333–355

    Article  Google Scholar 

  2. Xu L, Xian F, Zhang Y, Zhang L (2019) Surface segregation of Ag and its effect on the microstructure, optical properties and conduction type of ZnO thin films. Physica B Condens Matter 566:103–115

    Article  CAS  Google Scholar 

  3. Barda H, Rabkin E (2019) Improving the thermal stability of nickel thin films on sapphire by a minor alloying addition of gold. Appl Surf Sci 484:1070–1079. https://doi.org/10.1016/J.APSUSC.2019.04.176

    Article  CAS  Google Scholar 

  4. Ciesielskia A, Skowronski L, Trzcinski M, Górecka E, Trautman P, Szoplik T (2018) Evidence of germanium segregation in gold thin films. Surf Sci 674:73–78

    Article  Google Scholar 

  5. Brown JA, Mishin Y (2004) Effect of surface stress on Ni segregation in (110) NiAl thin films. Phys Rev B 69:195407

    Article  Google Scholar 

  6. Williams FL, Nason D (1974) Binary alloy surface compositions from bulk alloy thermodynamic data. Surf Sci 45:377–408

    Article  CAS  Google Scholar 

  7. Swaminarayan S, Srolovitz DJ (1996) Surface segregation in thin films. Acta Mater 44:2067–2072

    Article  CAS  Google Scholar 

  8. Cs Cserati, Szabo IA, Beke DL (1998) Size effect in surface segregation. J Appl Phys 83:3021–3027

    Article  Google Scholar 

  9. Pirart J, Front A, Rapetti D, Andreazza-Vignolle C, Andreazza P, Mottet C, Ferrando R (2019) Reversed size-dependent stabilization of ordered nanophases. Nat Commun 10:1982. https://doi.org/10.1038/s41467-019-09841-3

    Article  CAS  Google Scholar 

  10. Kumar A, Barda H, Klinger L, Finnis MW, Lordi V, Rabkin E, Srolovitz DJ (2018) Anomalous diffusion along metal/ceramic interfaces. Nat Commun 9:5251

    Article  CAS  Google Scholar 

  11. Wynblatt P, Chatain D (2006) Anisotropy of segregation at grain boundaries and surfaces. Metall Mater Trans 37A:2595–2620

    Article  CAS  Google Scholar 

  12. Lejček P (2013) Effect of ternary solute interaction on interfacial segregation and grain boundary embrittlement. J Mater Sci 48:4965–4972. https://doi.org/10.1007/s10853-013-7280-2

    Article  CAS  Google Scholar 

  13. Barda H, Rabkin E (2019) Metal hetero-diffusion along the metal-ceramic interfaces: a case study of Au diffusion along the Ni-sapphire interface. Acta Mater (under review)

  14. Lee YW, Aaronson HI (1980) Anisotropy of coherent interphase boundary energy. Acta Metall 28:539–548

    Article  Google Scholar 

  15. Cahn JW (1961) On spinodal decomposition. Acta Metall 9:795–801

    Article  CAS  Google Scholar 

  16. Cahn JW (1962) On spinodal decomposition in cubic crystals. Acta Metall 10:179–183

    Article  CAS  Google Scholar 

  17. Wynblatt P, Ku RC (1977) Surface energy and solute strain energy effects in surface segregation. Surf Sci 65:511–531

    Article  CAS  Google Scholar 

  18. Meltzman H, Mordehai D, Kaplan WD (2012) Solid-solid interface reconstruction at equilibrated Ni–Al2O3 interface. Acta Mater 60:4359–4369

    Article  CAS  Google Scholar 

  19. Kovalenko O, Rabkin E (2015) Mechano-stimulated equilibration of gold nanoparticles on sapphire. Scr Mater 107:149–152

    Article  CAS  Google Scholar 

  20. Steigerwald DA, Miller SJ, Wynblatt P (1985) Anisotropy of surface composition in a Ni–Au alloy. Surf Sci 155:79–100. https://doi.org/10.1016/0039-6028(85)90406-6

    Article  CAS  Google Scholar 

  21. Johnson WC, Chavka NG, Ku R, Bomback JL, Wynblatt P (1978) Orientation dependence of surface segregation in a dilute Ni–Au alloy. J Vac Sci Technol 15:467–469. https://doi.org/10.1116/1.569593

    Article  CAS  Google Scholar 

  22. Lam NQ, Hoff HA, Régnier PG (1985) Sputter-induced compositional modifications in a Ni–Au alloy. J Nucl Mater 133–134:427–429. https://doi.org/10.1016/0022-3115(85)90182-5

    Article  Google Scholar 

  23. Kelley MJ, Gilmour PW, Swartzfager DG (1980) Strain effects in surface segregation—the Au/Ni system. J Vac Sci Technol 17:634–637. https://doi.org/10.1116/1.570529

    Article  CAS  Google Scholar 

  24. Wang J, Lu X-G, Sundman B, Su X (2005) Thermodynamic assessment of the Au–Ni system. Calphad 29:263–268

    Article  CAS  Google Scholar 

  25. Amram D, Barlam D, Rabkin E, Shneck RZ (2016) Coherency strain reduction in particles on a substrate as a driving force for solute segregation. Scr Mater 122:89–92

    Article  CAS  Google Scholar 

  26. Amram D, Rabkin E (2014) Core (Fe)–Shell (Au) nanoparticles obtained from thin Fe/Au bilayers employing surface segregation. ACS Nano 8:10687–10693

    Article  CAS  Google Scholar 

  27. Kovalenko O, Chikli FO, Rabkin E (2016) The equilibrium crystal shape of iron. Scr Mater 123:109–112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint ISF-NSFC Research Program, jointly funded by the Israel Science Foundation (Grant No. 2233/15) and National Natural Science Foundation of China (Grant No. 51511140420). Helpful discussions with Dr. Nimrod Gazit and Ms Hagit Barda are heartily appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugen Rabkin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klinger, L., Wang, J. & Rabkin, E. The effect of stress on surface and interface segregation in thin alloy films on inert substrates. J Mater Sci 55, 3629–3635 (2020). https://doi.org/10.1007/s10853-019-04207-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04207-y